Minimize Orion / EM-1

Orion / EM-1 (Exploration Mission-1)

Orion Vehicle    ESM    Development Status    Launch    SLS    Payloads    References

Orion EM-1, previously known as SLS-1 (Space Launch System-1) is NASA's first planned flight of the Space Launch System and the second uncrewed test flight of the Orion MPCV (Multi-Purpose Crew Vehicle). NASA, ESA, European and US Industry have teamed to develop the ORION spacecraft.

Under an agreement between NASA and ESA, ratified in December 2012, NASA’s new Orion vehicle for human space exploration missions includes the ESM (European Service Module), based upon the design and experience of ESA’s ATV (Automated Transfer Vehicle), the supply craft for the ISS (International Space Station).

ESA’s industrial prime contractor for ATV, Airbus Defence and Space of Bremen, Germany, is leading a European industrial consortium, developing this vehicle on behalf of ESA and working closely with NASA’s Orion US industrial prime contractor Lockheed Martin Space Systems.

Orion is the spacecraft that NASA intends to use to send humans and cargo into space beyond low earth orbit and to return them safely to Earth. It is being developed for crewed missions to cislunar space, asteroids, and then to Mars. The capsule is also planned as a backup vehicle for missions to the ISS (International Space Station). It will be launched by the NASA-developed SLS (Space Launch System) in 2019. 1) 2)

The first test flight of Orion was successfully completed in December 2014 with a Delta IV launch vehicle that launched the Orion Crew Module into a high elliptical orbit to demonstrate high-speed atmospheric Earth re-entry. This flight test did not include the ESM.

It is planned such that the Orion EM-1 flies a mission profile similar to what might be used in a future asteroid redirect mission. The un-crewed Orion travels to a lunar DRO (Distant Retrograde Orbit) mission (Figure 2), then returns on a trajectory calculated to achieve a high speed atmospheric entry on the order of ~11 km/s to demonstrate the performance and effectiveness of the Orion TPS (Thermal Protection System), as well as relevant environments prior to the first manned launch of the system. The total mission duration is 25 days (6 at destination). This will be the first flight of the ESM.

The human exploration of space is a national policy of the government of the United States. The National Space Policy directs NASA to: 3)

• Set far reaching exploration milestones. By 2025, begin crewed missions beyond the moon, including sending humans to an asteroid. By the mid-2030s, send humans to orbit Mars and return them safely to Earth.

• Furthermore, the NASA Authorization Act of 2010, a law passed by the U.S. Congress and signed by the President, states that the “long term objective for human exploration of space should be the eventual international exploration of Mars.”

NASA is implementing this policy as the Journey to Mars, a journey that will be neither quick nor easy. 56 million kilometers away at its closest approach, with an atmosphere too thin for easy braking but too thick to ignore, with freezing surface temperatures, a minimal magnetic field for radiation protection, and communications delays with Earth of up to 40 minutes, Mars represents the current high frontier in human exploration.

Even though Mars is tremendously challenging, it has resources necessary for human exploration (oxygen, CO2 atmosphere, and water). These resources are critical to allow us to break the ties with Earth and become Earth Independent. The atmosphere, even though very thin by Earth standards, still provides some radiation shielding. Developing the ability to utilize the resources on Mars will be critical for the journey. We have calculated that roughly 20 mt of oxygen will be needed for the human Mars ascent vehicle to achieve orbit around Mars. Rather than carry all of the propellant and oxygen needed for a Mars ascent vehicle, we will generate that propellant from the materials available on Mars.

The challenges are too difficult to tackle all at once. Instead, NASA is breaking it down into more manageable objectives: the Earth Reliant phase, the Proving Ground phase, and the Earth Independent phase. Each phase builds upon the successes (and failures) of the previous one in a sustainable, repeatable, and in manner that allows for changes in technology or funding. In this approach NASA does not need to develop and control all aspects of the journey. NASA will utilize the private sector and international partners in critical roles of the journey and depend on these partners for successful achievement of the overall journey.

Earth Reliant: NASA is operating in the Earth Reliant phase of the Journey to Mars aboard the ISS (International Space Station) right now. The ISS, orbiting some 400 km above Earth, is mere hours away from the safety and comfort of our home planet. Aboard the space station, NASA and the other international partners are developing the technologies needed to sustain human life much farther away than 400 kilometers. A new and varied fleet of commercially produced and procured vehicles is taking over the duties of transportation of humans and cargo from Earth to ISS. NASA’s investments in this area promise to create new opportunities for the development of LEO, including broader use of the ISS as an orbital science laboratory and as a demonstration platform for future commercial space facilities as NASA moves towards the Proving Ground phase.

In the Earth Reliant phase, NASA is developing the “Mars-capable” systems that will be needed for long-duration stays outside of the comfortable frontier of LEO. Currently manifested or planned experiments and demonstrations include improved long-duration life support for Mars missions, advanced fire safety equipment, next-generation spacesuit technologies, high-data-rate communications, techniques to reduce logistics, large deployable solar arrays, in-space additive manufacturing, advanced exercise and medical equipment, radiation monitoring and shielding, human/robotic operations, and autonomous crew operations.

However, these “Mars-capable” systems are not only technological, but also biological- this work includes the development and demonstration of the human systems; the countermeasures, procedures, and adaptations the crew will need to survive and thrive in deep space. NASA’s Human Research Program is actively working on identifying, mitigating, and eliminating the risks of spaceflight to the human body aboard ISS, while acknowledging that some risks- like radiation- can only be fully quantified with long-duration human exposure to the environment outside the Van Allen belt. NASA astronauts and others will also gain experience on a variety of management, operations, and maintenance styles and techniques are they begin flying to orbit onboard the Boeing and SpaceX crew vehicles.

We have a lot to learn from the Earth Reliant time on ISS. We have continuously been surprised by problems that arise on ISS, especially in the life support systems. NASA performed extensive ground testing on these systems only to be surprised by their actual performance in space. For example, the water systems were much more susceptible to bio-films and blockage than ground tests showed. Carbon dioxide removal system beds have more problems with dust generation and valve fouling than anticipated. We need to discover and solve these problems on ISS before venturing into deep space with these systems. ISS is the perfect platform for these development and testing activities.

In this Earth Reliant phase- when regular interaction and management from the ground is possible - NASA and its commercial partners will continue to return benefits to humanity on Earth while developing the skills to go farther. NASA intends to begin short-duration cislunar while ISS is still operating. It is a fundamental tenant of human spaceflight that continuity of operations be persevered, in order to maintain our progress in a sustained manner.

Earth Independence will also require a new operating philosophy with our crews. Today, the ground crews often serve as an additional ISS crew member. Many robotic activities are done from the ground while the ISS crew sleeps. During space walks the ground serves as an extra set of eyes and ears for the crew. As crews move into deep space, the crews must become more autonomous. Here again, ISS is an excellent platform to practice crew independence before it is required. Time delays between Earth and ISS can be added to simulate the real time delays associated with communication distances as will be experienced at Mars distances.

Proving Ground: Aboard NASA’s Orion spacecraft, astronauts will look down on Earth from a perspective never seen before. Far from the comparative hustle and bustle of the ISS- with the Earth speeding by the window, with 12-15 vehicle dockings per year, and with hundreds of government and commercial experiments running in constant communication with the ground- the Proving Ground will be a more secluded place. Beginning with missions of short duration and gradually building as experience is gained, the Proving Ground will allow NASA and its partners to practice with, innovate on, and demonstrate the technologies and capabilities needed to send humans to Mars, while remaining in a location near enough to Earth to allow for crew return (in a matter of days) and close monitoring of technology advancement. NASA recently issued a call for commercial industry to propose habitation concepts and solutions for the Proving Ground, continuing the partnership started in LEO.

Activities that have become what passes for routine in our industry- such as vehicle rendezvous and docking and EVA- will needed to be revalidated in cislunar space. The environmental, power, communications, and other systems that have been developed on ISS will be verified in the environment for which they were actually designed, far from regular resupply, and operating without the regularity of maintenance which they currently require.

Launching from the Kennedy Space Center in 2019, the first integrated flight of the SLS (Space Launch System) rocket and the Orion spacecraft, called EM-1 (Exploration Mission-1), will demonstrate NASA’s commitment and capability to extend human existence to deep space. The EM-1 mission will be flown without a crew. EM-1 is designed to stress the propulsion, navigation, communication, thermal, and Earth reentry systems. The mission will be the first mission flown to a distant retrograde orbit around the Moon, which is unique in that objects in this orbit will remain there without propulsive maneuvers. Testing the systems before the crew is flown is an important technique to reduce risks with the first crew missions to this remote location. The life support carbon dioxide removal system for Orion is being operated on ISS today.

The EM-1 milestone achievement will strengthen confidence in SLS and Orion as the right system design for the Journey to Mars strategy. The systems on Orion, and future deep space habitation systems, are designed to be Mars-class systems. EM-1 and subsequent missions will take these systems from Mars-class to “Mars Ready.” After a series of these missions, each increasing in duration and complexity, NASA will undertake a “shakedown cruise”- a long-duration mission using the “Mars-capable” systems, uninterrupted by outside assistance. This mission will validate the complete architecture needed to take humans to the Mars vicinity and return them to the Earth.

Earth Independent: Earth Independent systems and operations are NASA’s ultimate goal for Mars or any destination for humans beyond the Earth-Moon system. While true Earth Independence is many years away, NASA is laying the foundations for human exploration now. A fleet of robotic orbiters, landers, and rovers is on and around Mars, doing increasingly sophisticated analysis and exploration. Many of these missions have experiments explicitly dedicated to categorizing the environment humans will face; the Curiosity rover has a radiation detector that was also flown on ISS, and the upcoming Mars 2020 mission will have several more human health-related experiments. Robotic exploration is human exploration, albeit from a slightly removed distance, and both programs are tightly coordinated today. A safe human exploration of Mars cannot happen without a robust robotic foundation.

While the Earth Reliant and Proving Ground phases have been vigorously pursued and evaluated, the Earth Independent phase is less detailed. This is no accident. It will take an over a decade to get humans to Mars in a sustainable manner, and it is incumbent upon the current generation not to dictate or limit the manner that future generations will explore. While we can predict may of the needs of future explorers- radiation protection, food supply, environmental control, and so on- it is foolish to believe that our proposed technological solutions will be the ones most relevant to them. Instead, NASA is pursuing a capabilities-based approach, developing what we need as we can foresee the application. It is through this long-term view that we believe we can best serve our goal and destination of expanding the human presence in the solar system. We are developing an agile and sustainable approach to deep space exploration. Just as Apollo required a different approach to system engineering and hardware development, so too will the challenges associated with Mars-class missions require a different development approach and a new type of systems engineering. NASA and the U.S. alone cannot build all of the systems and perform all of the development needed for this adventure. NASA can orchestrate the plan, but will be dependent on the private sector and international partners for key components.

Today NASA is utilizing the ambitions of SpaceX to land a vehicle on Mars to obtain critical data on the technical considerations for using a propulsive landing capability in the Mars atmosphere. NASA is assisting SpaceX by providing deep space navigation capability and communication capability in exchange for access to SpaceX’s data on retro-propulsion Martian entry descent and landing data. NASA has also placed the European Space Agency in the critical path for all of its human deep space exploration capability by partnering with ESA to provide the Orion service module. The service module provides thermal control, power generation life support consumables storage and propulsion for Orion, allowing it to return to Earth from a distant retrograde orbit around the Moon. These functions are critical to keeping the crew safe on Orion.

A Marketplace Above: As NASA prepares to move beyond low Earth orbit, it is our goal to facilitate an orderly, timely, and profitable transition from government tenancy in LEO to the commercial sector. Through NASA’s commercial development programs, we have already demonstrated the ability of the private sector to deploy reliable launch and return vehicles for cargo to the ISS. In the near future, we are aiming to repeat that feat by using the world’s first commercially developed crew vehicles for ISS transportation. Earlier this year, with NASA’s assistance, the first commercially-developed expandable module was deployed onboard ISS.

Learning the benefits and issues with expandable modules directly in flight will provide criticality data for future planning. Rather than speculating on the properties of this new technology, direct on-orbit performance will be recorded. In ISS’s normal mode of operations, we see dozens of commercial payloads operating every day, from biological research to materials development to CubeSat deployment. The Center for the Advancement of Science (CASIS), NASA’s chosen operator for the U.S. National Laboratory portion of the ISS, is actively developing new markets and new opportunities for companies and even industries that have never previously considered spaceborne research. The goal is to expose the private sector directly to unique properties of space for their terrestrial based processes and let them see if there is a potential revenue generating opportunity in spaceborne research and manufacturing. These private sector companies can utilize to explore and test revenue generating concepts without a major investment in infrastructure. Transportation for both cargo and crew is already available from the private sector.

At the moment, the ISS is the only system in LEO. NASA and its international partners- Canada, Japan, and Russia- have committed to operating the ISS through at least 2024 (European confirmation of support is expected later this year). NASA does not intend to continue owning and operating a LEO platform. Through the research and development onboard ISS, we are trying to help create a new marketplace for both supply and demand in LEO- one where companies that require access to LEO for research or even production contract directly with companies that can provide transportation and logistics, without government involvement. We expect many of the approaches pioneered for commercial utilization of LEO will also have applications in NASA’s deep space activities. Commercialization of LEO (Low Earth Orbit) is the next frontier for private companies for both those that want to provide access and accommodations in space, and those that require the same.

The commercial LEO environment will likely be very different than ISS. It is unlikely that a facility as large and complex as the ISS will be built in LEO by the private sector. The facilities for the private sector are likely to be single purpose laboratories. The facilities could be crew tended and primarily ground operated. The facilities could also be extensions of current cargo vehicles or crew vehicles such as Cygnus, Dragon Lab or Dreamchaser. The facilities need to have low operating costs and reflect the revenue generation potential of the space research. The goal is a rich LEO research and manufacturing environment supported by a private sector transportation infrastructure.

Conclusion: It is a modern cliché to say that every generation believes they are living in a special time, with choices to be made that will positively or negatively affect the very future of humanity. It is true that the promise of Mars exploration and space commercialization has been made and broken- before, and it is tempting to believe that this time will be no different. However, we are at a point in space travel that is demonstrably unprecedented in human history. Privately developed and operated vehicles are delivering cargo to an international outpost that has been continually crewed for 15+ years, onboard which a commercial module is undergoing testing, and NASA has asked for concepts for the private sector to use the ISS to accelerate their development of revenue generation from space.

Private companies can now develop their own rockets and propulsion systems and sell them on the open market. Inside the ISS, experiments in nearly every scientific field are being conducted by commercial, industrial, and academic organizations, some of which are even looking to space as a production environment. We are also flying numerous pieces of terrestrial research equipment such as DNA sequencers. The private sector no longer needs to develop custom equipment but can fly their off-the-shelf research equipment to space. In the near future, commercial companies will begin ferrying astronauts to and from the ISS. And in public, in forums such as this, NASA is explicitly saying that not only is a commercial marketplace its desired and primary outcome for LEO, it is saying that a robust commercial space market is a fundamental building block for deep space human exploration.

Things are changing. As the Earth Reliant phase exits governmental control, NASA will take both its international and commercial partners to the Proving Ground, where we will learn to live and work farther from Earth than ever before in a sustainable manner. There is no set path for this journey to Mars- merely a set of frontiers that must be broken. There is no final frontier only the next one in front of us. We are beginning an exciting journey to move human presence off of the Earth and into the solar system.

Table 1: The NASA Exploration Program – the Journey to Mars 3) 4) 5)


Orion EM-2 is planned as a Crewed High Lunar Orbit mission no later than the end of 2021. It is planned to spend several days in lunar orbit before performing a TEI (Trans-Earth Injection) burn to begin the return to Earth. The total mission duration is expected to be 14 days maximum (4 at destination).

Mission

Purpose

Duration

EM-1 - Lunar (DRO (Distant Retrograde Orbit) mission

- Qualification (uncrewed)
- Simulate asteroid redirect mission

25 days (6 at destination)

EM-2 - Crewed High Lunar Orbit mission

- Qualification (crewed)

14 days (4 at destination)

Lunar Sortie mission

- Land crew of four on the surface of the Moon
and returns them to Earth

26 days (7 uncrewed in LLO)

ISS Backup Crew Delivery mission

- Backup crew and cargo delivery to the ISS

216 days (210 quiescent)

Table 2: Overview of Orion ESM Design Reference Missions

OrionEM1_Auto3E

Figure 1: Artist's rendition of the Orion EM-1 spacecraft in lunar orbit (image credit: NASA, ESA)

OrionEM1_Auto3D

Figure 2: Orion EM-1 (Exploration Mission-1) design reference (image credit: NASA)




The Orion Vehicle

The Orion architecture configuration consists of the following modules: (Figures 3 and 4, Ref. 1)

• CM (Crew Module)

• ESM (European Service Module)

• CMA (Crew Module Adapter)

• SA (Spacecraft Adapter)

• SAJ (Spacecraft Adapter Jettisoned Fairings)

• LAS (Launch Abort System)

The Service Module (SM) refers to the combined CMA + ESM + SA + SAJ.

The Crew Module and ESM (European Service Module), also referred to as SM, are physically interfacing via an interface ring called the CMA (Crew Module Adapter). The ESM is attached to the CMA for the duration of the mission. Just prior to the Earth’s orbit entry, the CMA separates from the CM for CMA/ESM disposal and the CM performs final reentry and landing operations.

NASA is responsible for development of the CM, CMA, SA, SAJ, and LAS elements of the Orion spacecraft. The CMA provides the structural, mechanical, electrical, and fluid interface between the CM and ESM. In addition, the CMA houses communication equipment, sublimators for thermal heat rejection, and power and data control/interface electronics. The SM is enclosed by three spacecraft adapter fairing panels (SAJ) which provide a partial load path from the CMA to SA but also protect the solar arrays, radiators, and thrusters from launch and ascent loads. The fairings will be jettisoned during the ascent phase or following main engine cut-off of the launch vehicle.

The SA (Spacecraft Adapter) provides the interface to the launch vehicle during launch. During launch and ascent, the ESM and SA will be enclosed by the SAJ. The SA attaches to the aft end of the ESM to the Launch Vehicle and includes the structural interface, separation mechanisms, and umbilical connectors for communication between the launch vehicle and the Orion Spacecraft. At launch vehicle burnout, the Orion Spacecraft separates from the SA at the ESM/SA separation plane.

OrionEM1_Auto3C

Figure 3: Overview of the Orion spacecraft architecture (image credit: NASA, ESA)

OrionEM1_Auto3B

Figure 4: Orion schematic layout (image credit: NASA)




Orion EM-1 CM (Crew Module)

The milestones for the Orion EM-1 mirror the path taken by the Orion EFT-1 (Exploration Flight Test-1) spacecraft. However, the Orion EM-1 will sport a number of improvements based on the experiences of the December 2014 test flight. NASA is beefing up the critical TPS (Thermal Protection System) that will protect astronauts from the searing heats experienced during reentry as the human rated vehicle plunges through the Earth’s atmosphere after returning from ambitious expeditions to the Moon and beyond.

Based in part on lessons learned from EFT-1, engineers are refining Orion’s heat shield to enhance the design, ease manufacturing procedures and significantly strengthen is heat resistant capabilities for the far more challenging space environments and missions that lie ahead later this decade and planned further out in the future as part of NASA’s agency-wide ‘Journey to Mars’ initiative to send humans to the Red Planet in the 2030s.

On all future flights starting with EM-1 (Exploration Mission-1), the Orion crew module must withstand the higher temperatures and speeds experienced during return from more distant destinations such as the Moon, near-Earth Asteroids and Mars. Orion's TPS is comprised of the 5 m diameter main heat shield covering the rounded base of the capsule as well as the grid of back shell tiles bonded around the vehicle from top to bottom. 6)

Starting with EM-1, engineers will bond Orion’s thermal protection system back shell tiles with a silver, metallic-based thermal control coating. The coating is designed to keep Orion’s back shell in a temperature range from approximately -65 to 290ºC prior to entry and afford protection against electrical surface charges in space and during reentry.

The pressure vessel is the primary structure of Orion’s crew module and is made of seven large aluminum pieces that must be welded together in detailed fashion. The first weld connected the tunnel to the forward bulkhead, which is at the top of the spacecraft and houses many of Orion’s critical systems, such as the parachutes that deploy during reentry. Orion’s tunnel, with a docking hatch, will allow crews to move between the crew module and other spacecraft. 7)

Orion’s pressure vessel is composed of seven large pieces of aluminum, three of which are the cone panels. The pressure vessel holds the atmosphere astronauts will breathe against the vacuum of deep space, forming the crew compartment. The three panels together form the angled mid-section around the crew module where the windows and hatch are located. While technicians have been joining other elements of the structure together since early September, the cone panels have presented a unique challenge for NASA and Lockheed Martin, the agency’s prime contractor for Orion. Engineers who have sought to reduce the crew module’s overall weight have encountered and overcome technical challenges. 8)

The lessons learned from the EFT-1 mission are being applied to the EM-1 (Exploration Mission-1) and EM-2 flight test configurations to optimize a system design that can smoothly transition into production.

Ten of the most important lessons from EFT-1 focused on the ability to evaluate the design with actual flight performance. This was critical for the remaining design process as NASA continues to develop the most advanced Human rated spacecraft ever built. The following are the top ten lessons learned from this test flight: 9)

1) Some deep space designs are classic for a reason: Every aspect of Orion’s design is driven by crew safety. Over 50 years of NASA’s investment learning the ins and outs of human spaceflight has provided direction for meeting deep space requirements. An example is LAS (Launch Abort System). About 6 minutes into launch, the LAS is jettisoned to save mass for the journey to deep space destinations. While other system configurations exist, design trade studies repeatedly highlighted the advantage of not carrying extra weight past the time it is needed. So because the Orion LAS supports missions to deep space, mass is king and any extra weight is an extreme hindrance to those missions. By shedding the Orion LAS early, this mass isn’t a burden to the vehicle for the entire mission, and other Orion systems are able to provide the abort function for the remainder of ascent to orbit.

2) Crew safety is built in, not bolted on: The EFT-1 tested and verified systems that are built “into the bones” of the spacecraft from the very beginning. This means not just the heat shield or the flight computers are designed for the rigors of deep space, but everything included in the fundamental systems and structure of the spacecraft are designed and built to specifications set forth by NASA. Every system design has a deep space requirement it is being built to right now: Orion’s seats are being designed to help prevent loss of consciousness as astronauts experience up to 5 G’s during high-velocity re-entries, the cooling system keeps the crew cabin about 25ºC despite its heat shield being heated to 2,200ºC during reentry, the built in stowage lockers are designed to double as a safe-haven during dangerous solar activity, the life support system allows for exercise since deep space missions require much longer stays in zero gravity, computers and avionics are designed to self-correct in case there is a failure and you’re months from home, and the crew module tiles are designed to protect from multiple micro-meteoroid strikes since the number of strikes will increase during missions that last months instead of days.

3) Reusability must be tied to reality: Part of flying for the first time in space is being able to make informed decisions about what we can realistically reuse following a deep space mission. After evaluating areas of water intrusion and corrosion, we’ve come to expect that many components in the crew module, especially inside the pressurized volume, or the hull where the crew sits, can be reused for later flights—components such as the computers, avionics and electrical distribution for example. The structure itself is more difficult to predict for reuse base on the unpredictable landing loads it might experience from a long journey from deep space with unpredictable landing sea conditions. The program is looking at options for reuse based on actual landing load data provided.

4) Designs mature as we Learn: Significant design changes are being made to optimize the EM vehicles. Thefuture design and analysis efforts will be simplified (Figure 5), overall mass has gone down, and recurring costs for production will be lowered. Establishing a common design philosophy has prevented a large number of engineering revisions and hardware changes. The Orion design is now incorporating lessons from EFT-1 and updated requirements for the crewed EM-2 mission.

OrionEM1_Auto3A

Figure 5: Some highlights of the numerous design changes made as a result of the EFT-1 flight (image credit: NASA, Lockheed Martin)

5) Test like you fly to ensure success: After extensive testing on the ground in “Flight Like” scenarios EFT-1 successfully tested Orion in real flight environments, which could not be duplicated in ground simulations. The systems were subjected to the most critical crew safety requirement with the same rigors they will see when carrying humans. Systems verified included: thermal protection system, hardware separation events and the parachute system. This was a 100% mission success. 87 EFT-1 flight test objectives were identified in the early phases of the test development program. These objectives included verification of Orion’s subsystems ability to launch, control its trajectory with OFI (Operational Flight Instrumentation), complete all separation events, reenter the Earth’s atmosphere at 32, 200 km/hr and 2200ºC, land accurately in the Pacific Ocean and be recovered without damage. 81 of the 87 FTOs (Flight Test Objectives) were fully satisfied with six being partially met. Four of the seven FTO's were related to suspect DFI (Developmental Flight Instrumentation) performance. Two FTO’s related to the Crew Module Up-righting System were partially met, and one FTO related to structural measurements was partially met.

6) Organize for focus: Organizationally, Lockheed Martin and NASA agreed assigning a “mission director” to each test flight would allow program focus on the near term test milestones while maintaining a parallel program focus on the remaining DDT&E (Design, Development, Test, and Evaluation) efforts. EFT-1 was the first mission where this was implemented and proved to ensure the test was completed on time and within budget. This effort also saved over one year of development time for EM-1 by performing this in parallel versus chronologically.

7) Processes and reviews tailored: Since its inception the Orion program has spent significant time focusing on defining an efficient set of requirements to enable the design of Orion as well as optimize the concept of operations for a recurring program rhythm. In an effort to remain flexible the program continues to evolve the requirements based on lessons learned. On EFT-1 the program used a consolidated requirements document approach that was successful in limiting the number of requirements, individual requirements documents, and tiers of requirements documents. The team is using the success of this approach to streamline the EM requirements where possible. Requirements verifications were completed later than planned, partly because the verification work did not carry the same urgency as other launch campaign tasks. The team is looking at a more structured “waterfall” approach to prevent lower level verifications from conflicting with launch campaign activities.

8) Flexibility to accommodate change: Several program planning improvements were accomplished during the course of the program leading up to EFT-1. Improving the Orion IMS ( Integrated Master Schedule) by integrating the NASA “non-Prime” elements improved the continuity of the entire schedule past vehicle delivery. Through Monthly Orion Program Performance Review meetings, the assessments team continued to monitor the contractor performance. Data input for these reviews consisted of Integrated Master Schedule updates, CPRs (Cost Performance Reports), Financial Management Reports (533 inputs), contractor supplemental financial and schedule data, and through participation in the subsystem IPT (Integrated Product Team) meetings. The assessments team integrated these data each month to update the assessment and forecast for the EFT-1 launch date and financial position enabling program management to make rapid decisions.

9) Partnerships ensure Communication: After the President’s proposed cancellation of the Constellation program, NASA and Lockheed Martin recognized reductions needed to occur both on the government side and within Industry to keep the program intact. NASA identified all work within their scope as “Non-Prime” and all work within Industry as “Prime”. NASA and Industry were challenged with a $738.9 M reduction in funding in 2010 and needed to re-plan the entire program in anticipation of this reduction. The cost reduction initiatives they initiated have come to be known as “The streamlining of Orion” and have been used as examples of how NASA and Industry can work together to become more efficient and affordable. The continued emphasis on meeting program objectives within the government’s affordability range have resulted in a refined program plan that accomplishes all of its goals within the annual budget and without jeopardizing mission success. One example of this was the reduction of test flights from seven to four while maintaining the same requirements verifications.

10) Supply Chain must remain healthy: EFT-1 provided the Orion team the ability to exercise 80% of the supply chain that will be utilized for future production vehicles. This includes subcontractors currently spread across 42 states with 60,000 parts being received by NASA or its prime subcontractor in 3 major integration facilities. Throughout this endeavor the processes were validated, enhancements were made and opportunities for improvement identified. EFT-1 helped establish 6 key principles needed to ensure effective supply chain management:

• Centralized supply chain ownership/management offers advantages over IPT ownership

• Need for timely actionable information, including stable engineering design documentation, is mandatory

• Consistent, effective and constant communication is mandatory

• Management of the supplier certification and work load

• Manage with the tools, don’t expect the tools to manage

• Work within the system.

In summary, NASA and Lockheed Martin are taking what we have learned from EFT-1 and years of government investments to make improvements, fly again, making improvements again, and developing a spacecraft that we can proudly stand behind and say we are confident in its abilities to take humans into deep space and bring them safely home.




Some examples of Orion design changes as a result of lessons learned from EFT-1 deals with the structure of the EM.

The Orion design for future Exploration Missions experienced many design optimizations as a result of the EFT-1 flight results. The following section highlights several changes to exemplify optimizations that was realized. Note: (For more information, the reader is referred to Ref. 9).

Structures: Reduced parts and weld assemblies required on the pressure vessel include:

- Reduction from 6 to 3 cone panels, and reduction of cone section welds from 12 to 3.

- Reduction from a 3 piece welded aft bulkhead design to a single spun-formed design.

- Change to an “Apollo-gusset” design in the aft-bay to help reduce the number of separable-parts, and combine structural elements (reduced thruster pod support structures and harness support structures, etc.).

OrionEM1_Auto39

Figure 6: A simplification and reduction of structural parts has been realized by the lessons from EFT-1 (image credit: NASA, Lockheed Martin)

Propulsion: Tubing subassemblies on EFT-1 were custom fit for propulsion system integration (e.g. fit-up tube assembly, cut, face, install heaters / temp sensors, reinstall, repeat as required). On EM-1 no trim to fit will be required on the vehicle. Tubing subassemblies will be delivered in their net shape and subassembly welds will be proof & leak tested prior to delivery.

PCAs (Pressure Control Assemblies) on EFT-1 required a custom fit for propulsion system integration (similar to Tubing subassemblies). On EM-1 there will be improved packaging and attachment methods including PCA welds proof & leak checked prior to delivery.

Propellant and Pressurant Tanks on EFT-1 were difficult to integrate and perform welding operations. The EM-1 design created a new inlet / outlet orientation to ease integration and welding operations.

RCS (Reaction Control System) thrusters on EFT-1 had support struts that have been simplified to a Pod design and attachment method eliminating all struts.

OrionEM1_Auto38

Figure 7: Left: EFT-1 Roll Left Thruster, Right: EM-1 Roll Left Thruster Pods (image credit: NASA, Lockheed Martin)

TPS (Thermal Protection Systems): The Heatshield Avcoat design improvement included changing from a monolithic, individual cell injection process to a “Block Avcoat” design where the heat shield blocks could be automated in production while increasing material properties performance. The use of thermal tape that was used on the EFT-1 heatshield (and similar to Apollo) was changed to use on all backshell and heatshield surfaces for all future Exploration Missions.

Micrometeoroid and Orbital Debris Performance: There are a number of lessons learned in the realm of MMOD (Micrometeoroid and Orbital Debris) environments and analyses, which are being examined and used to influence change for the EM and beyond missions. Chief among these lessons learned is that time spent in the high orbital debris flux altitude band, approximately 650 km to 1200 km, should be minimized. The MMOD analysis performed on EFT-1 was the first such analysis of a human-rated spacecraft above ISS ( International Space Station) altitudes since man-made orbital debris has become an issue, and found the risk at these altitudes (600 km – 1600 km) to be much higher than anticipated; Apollo was too early in spaceflight history for much OD (Orbital Debris) to have accumulated yet. Post-flight inspection of the EFT-1 capsule indicated that actual MMOD exposure may have been even higher than the analyses had assessed. Based on this lesson learned, the parking orbit of EM-1 has been reduced from 3.5 hours in a high-MMOD-risk orbit (2 orbits), to half that time (limited to 1 orbit) to reduce MMOD risk. And as EM-2 trajectory trades and analysis is ongoing, avoiding these altitudes has been accepted as a prerequisite in the EM-2 trajectories. Largely anchored on this finding, other lesson learned recommendations include: increasing MMOD protection in upper-stage and other critical hardware, re-assessing window damage cause and remediation, and continued post-flight inspections and MMOD environment recommended updates based on EM flights.

Radiation Summary: Orion is the first spacecraft that addresses crew radiation protection as an integral part of the vehicle design. We are using a state-of-the-art radiation analysis process to analyze the shielding provided by the vehicle and quantify the internal radiation environment. This analysis is based on the full fidelity Orion CAD model and space radiation environment models. Due to the EFT-1 trajectory passing through the very core of the van Allen proton belts, intravehicular radiation environment was equivalent to 4-6 weeks inside ISS (in terms of cumulative exposure). Thus EFT-1 presented a valuable opportunity to validate our analysis procedure and ultimately improve crew radiation protection for future manned missions. This opportunity was materialized by flying six RAMs (Radiation Area Monitors) on EFT-1. Radiation measurements were in very good agreement with pre-flight predictions, confirming the validity of the radiation analysis approach and providing confidence in our efforts to maintain crew radiation exposure ALARA (As Low as Reasonably Achievable) consistent with NASA requirements.

An important lesson learned for electronic components radiation hardening refers to the importance of considering time variability of the environments in the Single Event Effect rate calculations. The EFT-1 proton environment varied dramatically throughout the mission. Accounting for this time variation was an essential component in selecting the appropriate level of redundancy in critical systems such as the VMC/FCMs (Vehicle Management Computer / Flight Control Modules). This lesson continues to apply to Exploration Missions. Stochastically occurringSPEs ( Solar Particle Events) may cause significant temporary increase in the radiation environment, and critical systems need to design appropriately. A related lesson learned reflects the importance of assessing timing of critical mission events with respect to the radiation environment. Environment assessments performed for EFT-1 drove modification of the mission timeline such that Avionics intensive mission events be executed outside of the core of the van Allen belts. This too is a lesson learned relevant for future missions especially in off-nominal conditions that may expose the spacecraft to high radiation environments.


EM-2 (Exploration Mission-2): EM-2 will be a crewed test flight that will be launched on an SLS and enter lunar orbit in 2021 to verify the capability of Orion to successfully launch, perform a crewed mission, and return them safely to Earth. Figure 2 depicts one option for a lunar mission. The EM-2 configuration will consist of:

• A fully functional launch abort system

• A fully functional Crew Module that includes a crew of up to four and all Cis-Lunar life support systems

• A fully functional Service Module.

OrionEM1_Auto37

Figure 8: EM-2 Design Reference Mission (image credit: NASA)

OrionEM1_Auto36

Figure 9: Technicians with Lockheed Martin, NASA’s prime contractor for Orion, are welding together the pieces of the spacecraft's pressure vessel at Michoud Assembly Center in New Orleans, LA (image credit: NASA)




ESM (European Service Module)

The ESM implements four major system functions to Orion (Ref. 1):

• provides thrust for orbital maneuvers and attitude control after upper stage/launch vehicle separation

• generates electrical power and distributes it to the ESM users and to the CM/CMA

• regulates heat for the life support and avionics equipment during the orbital phases of the mission

• stores and provides to the CMA/CM potable water, oxygen, and nitrogen.

In addition, it ensures structural spacecraft integrity during launch and in-orbit maneuvers. The ESM can also provide additional volume and other resources on select missions for accommodating science, engineering demonstrations, development test objectives, and deployment of lunar infrastructure equipment during the cruise and lunar orbit phases of lunar missions. This volume provides electrical power distribution, network access for command and control interfaces, and structures and mechanisms.

The architecture of the module has been developed based on the ATV spacecraft concept (five successful missions to the ISS),modified to cope with the different mission requirements and the man-rating approach for beyond LEO missions. 10)

OrionEM1_Auto35

Figure 10: Illustration of an ATV cargo freighter in flight with deployed solar arrays (image credit: ESA)

The resulting ESM architecture is depicted in Figure 11, for comparison. The architecture of the system and subsystems hereafter proposed is the reference design for the Lunar Sortie Mission. Changes in the architecture are expected for the other missions to tailor the configuration to mission needs, to remove unnecessary HW and to optimize the launch mass.


European Industrial Consortium: ESA entrusted the development of the ESM (European Service Module) to a consortium of European industries led by Airbus Defence and Space. The consortium of companies was selected to reuse the experience and industrial heritage of the very successful ATV (Automated Transfer Vehicle). Airbus Defence DS Germany as the Prime Contractor is responsible for all system-related work. This includes: 11)

- The overall Management of the contract

- The overall System Engineering activities

- The Management of the procurement activities

- The System Product Assurance and Safety activities

- The liaison with Lockheed-Martin (NASA prime contractor of the Orion vehicle).

Airbus DS, France is responsible for part of the system engineering, ground software, Helium pressurant tanks and simulation facility.

On Subsystem level, Airbus DS, Germany is responsible for the System Engineering, the Propulsion, Power and Avionics Subsystem Engineering as well as for GSE and AIT activities. The responsibility for the development of the other sub-systems or equipment has been distributed among European companies as follows:

TAS (Thales Alenia Space) Italy: the Structure, Thermal and Consumable Storage Subsystems, supported by the following level-2 subcontractors:

- RUAG, Switzerland: secondary structures

- SONACA, Belgium: tank bulkhead

- APCO, Switzerland: MDPS (Meteoroid and Debris Protection System)

- CRISA, Spain, TCU (Thermal Control Unit)

- Prototech, Norway: nitrogen filters

- MEWASA, Switzerland, Water tank bellows.

Dutch Space, The Netherlands: the SAW (Solar Array Wings), supported by the following level-2 subcontractors:

- SELEX SE, Italy for the Photo Voltaic Assemblies

- RUAG, Switzerland: deployment dampers.

Airbus DS, Germany: the propellant tanks, Propulsion Drive Electronic and reaction control thrusters.

RUAG, Switzerland: the SADA (Solar Array Drive Assembly) composed of the mechanism and electronic unit.

SELEX SE, Italy: the PCDU (Power Conditioning and Distribution Unit)

Thales Alenia Space, Belgium: PRU (Pressure Regulation Unit)

Antwerp Space, Belgium: the Electrical Ground Support Equipment Front Ends, supported by the following level-2 subcontractors :

- Clemessy, France

- Rovsing, Denmark.

APCO, Switzerland: Mechanical Ground Support Equipment.

Latelec, France: avionics and power harness

TESAT Germany and Alter, Spain: CPP (Centralized Parts Procurement) scheme for EEE (Electrical, Electronic and Electromechanical)-parts.

Equipment suppliers encompasses Vacco (US), Moog (US), Sofrance (F), Cobham (US), Vivace (US).

OrionEM1_Auto34

Figure 11: Illustration of the ESM (European Service Module) without radiators and MDPS, image credit: ESA, Airbus DS


Physical architecture: The ESM is a cylindrical unpressurized module which interfaces at its bottom to the SA and at its top to the CMA. The OMS-E (Orbital Maneuvering System -Engine), i.e. the main engine, protrudes into the SA. Equipment on the tank platform is also allowed to protrude into the CMA. The total height of the ESM is 4.0 m.

The cylindrical shape is defined by the external radiators which enclose the body of the ESM. The function of the radiators is twofold, i.e. to radiate heat, and to serve as the first barrier of the MDPS (Micrometeoroid and Debris Protection Subsystem ). Mounted to the back side of the radiators are Nextel and Kevlar blankets which serve as the second barrier. The externally mounted RCS (Reaction Control System) pods and SAWs (Solar Array Wings) must be designed such that these respect the Orion SAJ allowable envelope.

The internal accommodation of the ESM subsystem equipment is highly dependent to the primary structure architecture, based on seven separate bays for accommodation, six located circumferentially about the central bay. The pressurant tanks are accommodated in the center bay. The four largest bays are used for the accommodation of the propellant tanks which dominate the available volume. The remaining volume provides accommodation to the avionics equipment, CSS (Consumable Storage Subsystem) water tanks, harnessing and tubing.

The top surface of the ESM is dominated by the protruding tank domes for the propellant subsystems, one of the helium pressure tanks, the four tanks for Oxygen and Nitrogen, and the Flow Control Assembly for the active cooling subsystem. These elements protrude into the CMA, while maintaining a specific minimum distance to the CM Heat Shield. For these elements above the tank platform, the CMA provides the MDPS protection.

The lower surface is dominated by the OMS-E, which serves as the main engine of the ESM, and the eight auxiliary thrusters. Within the lower platform, a panel is incorporated through which the UPC (Unpressurized Cargo) is installed, and optionally ejected.

Total launch mass

13,500 kg for Lunar Mission, including 8600 kg of usable propellant, 240 kg of potable water, 30 kg of N2 and 90 kg of O2

Dimensions

- ∅=5.2 m (with solar wings stored), L=4 m, deployed solar array span: 19 m
- ESM L is actually ~2 m, considering the primary structure only, but reaches up to 4 m adding the protrusions of the main engine toward the SA and the propellant / gas tanks toward CMA

Cargo

380 kg (max), maximum volume of 0.57 m3

Solar array power

11.2 kW

Propulsion

- 1 main engine, ca. 30 kN
- 8 auxiliary thrusters, each 490 N
- 24 RCS (Reaction Control System) thrusters, each 220 N

Table 3: ESM characteristics for Lunar Missions


Functional architecture: Orion functionalities are generally shared between ESM and CMA/CM. Functional Chains gather equipment of the ESM which participate to a same service provided by Orion for the accomplishment of its mission.

Figure 12 depicts the overall avionics subsystem architecture and interfaces. The interface to the SLS launcher is depicted on the left side of the drawing, and the CM and CMA (labeled as SM-CM I/F Adapter) are on the right side. The main link with Orion CM on-board computers is the ODN (On-board Data Network), based on a time-triggered Ethernet solution. This interface ensures the connection of all ESM avionics to the on-board computers and allows the ESM to receive commands and to deliver monitors.

Few discrete lines ensure the independent command of ESM power subsystem electronics, allow to acquire signals from 8 sun sensors used as back-up AOCS sensors and allow the transfer of data acquired from the development flight instrumentation.

The four SAWs (Solar Array Wings) ensure a maximum electrical power production of 11.2 kW, to cope with a CMA/CM power demand of maximum 7.3 kW to be respected with one wing failed.

Four power buses allow powering to / from the CMA/CM depending on mission phases. Additional and independent power lines are provided for the wireless cameras installed on top of SAWs.

Finally, a dedicated pass-through harness connects the CMA to the SA/SAJ and launcher to allow transfer of monitoring data and separation commands.

OrionEM1_Auto33

Figure 12: ESM functional architecture (image credit: ESA, Airbus DS)


ESM Layout:

The ESM provides translational and 3-axis attitude control for the spacecraft, stores consumables for the crew module and provides power via the solar arrays. The ESM is also being designed to carry cargo. The main subsystems of the ESM are: 12)

• Structure Subsystem

• TCS (Thermal Control Subsystem)

• CSS (Consumable Storage Subsystem)

• PSS (Propulsion Subsystem)

• EPS (Electrical Power Subsystem)

• Avionics Subsystem

OrionEM1_Auto32

Figure 13: Top view of the ESM and its elements (image credit: ESA, Airbus DS)

OrionEM1_Auto31

Figure 14: Illustration of the ESM architecture and principal layout of main elements (image credit: ESA, Airbus DS)


Structure subsystem: The ESM astructure consists of the following major elements:

• Primary structure

• Secondary structure

• MDPS (Meteoroid and Debris Protection).

The primary structure transmits the SLS launch loads to the upper composite composed of the CMA, the CM, and the LAS, then supports the upper composite aerodynamic and inertial loads as well as the ESM inertial loads generated by the ESM internal equipment. The design is based on a shared load path between the ESM and the external SAJ fairings. The objective is to minimize the loads applied on the ESM mechanical structure in order to optimize its mass which is propelled all along the mission, whilst the SAJ capability is sized to the extent possible by the main launch phase, since the SAJ mass is jettisoned early during the launch. The primary structure is composed of:

• 6 longerons (machined aluminum) linked to the CMA frame and six pyronuts that separate the ESM from the Spacecraft Adapter

• Tank bulkhead (machined aluminum) supporting the four propellant tanks, as well as the gas delivery CSS tanks, ensuring the main link between the CMA lower interface ring and the rest of ESM structure.

• "Radial" shear webs and internal "square" webs assembly (composite sandwich panels), housing most of the ESM equipment, including water tanks and SAW support frames and propulsion high pressure system. It forms the ESM core attached to the tank bulkhead, longerons and lower closeout panels. The main engine is attached to the central square tube panels via struts transmitting the thrust.

• Lower Platform (machined aluminum) on which the equipment is connected: OMS-E main engine, auxiliary thrusters supports, RCS pods supports, SAD (Solar Array Drive) mechanism, and PIE (Propulsion Isolation Equipment).

• MDPS covers and aft closure panels to protect the ESM from the MMOD (Micrometeoroid and Orbital Debris) environment.

The secondary structures support the ESM equipment carrying the inertial and dynamic loads of the equipment during launch and transmitting in-orbit thrust and inertial loads.

The MDPS is partly metallic and partly composed of Nextel reinforced MLI (Multi-Layered Insulation). Debris and meteoroid particles with velocities up to 24 km/s hit the outer wall, forming a cloud of lower energy particles which are then contained by the inner wall, preventing any penetration of the ESM.

OrionEM1_Auto30

Figure 15: Primary and secondary structures (image credit: ESA, Airbus DS)


TCS (Thermal Control Subsystem): The TCS includes an ATCS (Active Thermal Control Subystem), a PTCS (Passive thermal control Subsystem) and the TCU (Thermal Control Unit).

11) ATCS (Active Thermal Control Subystem): The ATCS is designed to collect the thermal loads from the CM and from the ESM powered equipment and to reject them toward the space radiative sink. The ATCS architecture is based on a Single-phase Fluid Loop Architecture using the HFE-7200 coolant to collect and to transfer the heat loads from both ESM avionics (via cold plates) and CM (via Inter-Loop Heat Exchanger) and to reject them through specific body mounted radiators. The ATCS is composed of two fully independent loops working simultaneously (hot redundancy approach). The schematic of the ATCS architecture is presented in Figure 16.

Each ATCS loop is composed by the following main components:

• 1 Radiator Assembly commonly used for both loops and composed of 4 full height radiators and 2 split radiators (with lower part not removable) mounted in serial configuration

• 1 CP (Cold Plate)

• 2 online APSBs (Absolute Pressure Sensor Blocks)

• 1 wet on-line TSB (Temperature Sensor Block)

• 1 FCA (Fluid Control Assembly) including redundant pumps with relevant passive accumulator and a TWMV (Three-Ways Modulating Valve)

• Hard/flex hoses, tees, couplings and restrictors.

OrionEM1_Auto2F

Figure 16: Architecture of the ATCS (image credit: ESA, Airbus DS)

The FCA is controlled by the TCU to provide constant mass flow rate inside the loop. In particular two flow rate set points are foreseen, one for nominal operation and one for contingency (with only one loop operative). The FCA also includes the TWMV, controlling the temperature at the ESM-CMA interface.

The external surface of the radiator panels is coated with a specific paint characterized by the following thermal-optical characteristics:

• Alpha (α) = 0.2

• Emissivity (ε) = 0.8.

The Cold Plates are devoted to collect the entire thermal load from the ESM avionics boxes. Their design is constituted by a stainless steel channelling enclosed in an aluminum casting acting as a plate in direct contact with the thermally active unit. Different Cold plate sizes, to satisfy the different configuration needs, are foreseen.

OrionEM1_Auto2E

Figure 17: Photo of a sample radiator panel (image credit: ESA, TAS)

12) PTCS (Passive Thermal Control Subsystem): The PTCS provides the thermal control of ESM hardware (propulsion, CSS, power and avionic items) and reduces the temperature gradients and minimize heat flows through the internal elements. The PTCS has two main components, heaters (with thermistors and wire heater) and insulation (MLI thermal blankets, including some specific high temperature MLI blankets, for thrusters and engine nozzle thermal impingement protection).

The MLI protects the internal parts against the external environment and heater lines compensate the heat leaks toward space. Different MLI typologies, in terms of composition, have been identified for the different applications on the ESM. The MLI composition mainly depends on exposure or not to the space, geometry & fixation interfaces and exposure to thrusters plume flux and nozzle radiation.

Two cold redundant heater lines managed by the TCU assure thermal control and temperature uniformity in the Orion internals and for the local thermal control of specific items. In addition, heater lines managed by thermostats and powered by the PCDU (Power Control and Distribution Unit) provide a further redundancy to the environmental control function.

13) TCU (Thermal Control Unit): The TCU is designed to ensure the management of the TCS and of the CSS.

For the ATCS, the TCU acquires the various parameters from the ATCS sensors, monitors and commands the ATCS valves, and issues commands to the FCA (Flow Control Assembly).

For the PTCS, the TCU commands the heater chains and monitors the thermistors. It operates according to activation and de-activation thresholds defined and modified by the CM on-board computers, while ensuring bus interface and power supply logic.

For the CSS (Consumables Storage Subsystem), the TCU commands the valves and monitors their position. It also monitors the pressure and temperature parameters in the subsystem to support the system FDIR (Failure Detection, Isolation and Recovery).

OrionEM1_Auto2D

Figure 18: Layout of the TCS (Thermal Control Subsystem), image credit: ESA, Airbus DS


CSS (Consumable Storage Subsystem): The CSS provides potable water, oxygen and nitrogen to the CM. It can also provide water for the sublimator located in the CMA via a dedicated kit composed by its own tank assy and distribution system, to be installed optionally for specific missions. It consists of the following major elements:

• WDS (Water Delivery Subystem)

• GDS (Gas Delivery Subsystem)

The architecture of the WDS is composed of the following components:

• Water tanks (metal bellow technology)

• Water on/off valves, (isolation valves)

• Temperature and quantity sensors

• 2 distribution lines towards the CMA I/F to supply water for the different CM/CMA needs.

The architecture of the GDS is composed of the following components:

• Gas tanks

• Gas pressure regulators

• Gas on/off valves, (isolation valves)

• Gas relief valves

• Temperature and pressure sensors

• Hydrophobic filters upstream the water tanks

• Distribution lines towards the CMA I/F to supply oxygen and nitrogen

• Distribution lines towards CMA I/F for GDS filling on ground from the GSE.

In the case of a configuration with WSK (Water Sublimator Kit) a set of 3 additional water tanks is introduced and interconnected to the others tanks and lines of CSS.

OrionEM1_Auto2C

Figure 19: Layout of the CSS (image credit: ESA, Airbus DS)


PSS (Propulsion Subsystem): The propulsion subsystem design has to cope with a complex mission scenario. It includes three different types of engines / thrusters. Each of these thrusters utilizes the same propellants: MON-3 (Mixed Oxides of Nitrogen) as oxidizer and MMH (Monomethylhydrazine) as fuel.

The single Main Engine, which is one of the Shuttle OMS-E engines (27.7 kN), is delivered by NASA as GFE (Government Furnished Equipment) and will be used during ascent abort and trans-earth injection maneuvers as well as orbit change maneuvers. This engine is gimballed with an amplitude of ± 7° around both axes (pitch and yaw). The actuation is performed by the TVC (Thrust Vector Control).

The 8 auxiliary thrusters which are similar to those used on ATV (490 N) are used during ascent abort and launcher separation together with the main engine. They are also used as backup to the main engine for trans-earth injection and for trajectory correction maneuvers.

The 24 RCS thrusters which are the same as used on ATV (220 N) provide the impulse necessary for attitude control, small maneuvers and forced translation during Rendezvous and Proximity operation. These thrusters are accommodated into six pods. Two pods are composed of four roll thrusters, placed along the ESM lateral surface under the CMA, while four other pods are composed of four thrusters, placed along the ESM lateral surface under the level of the first four pods. Each propellant type is stored in two propellant tanks, both sets of propellant tanks being arranged in a series configuration.

The propellant distribution comprises several electromechanical valves for propellant isolation and pressure transducers interconnected via pipes. The assembly ensures isolation of the engine / thrusters from the propellant tanks during launch, docked phase to the ISS and other mission events where it becomes necessary to isolate the engine / thrusters from the propellant storage. The propellant distribution network provides the connections between the propellant tanks and the isolation valves and then onwards to the thruster assemblies. Fill and Drain Valves and the related access lines are used during ground testing and for loading and unloading of the propellant and pressurized tanks. They are located in the CMA to enable access even after the SAJ around the service module has been installed.

The propulsion subsystem is controlled by the PDE (Propulsion Drive Electronics) which handles all nominal propulsion related commands issued by the CM and provides feedback via the CMA PDUs (Power Distribution Units) and the PDUs to the vehicle management computer interface and the ESM network. The PDE controls all thrusters, the TVC and the associated valves, instrumentation and leakage detection.

The PRU (Pressure Regulation Unit) controls and monitors the operation of the pressure regulation valves, based on set points defined and modified by the on-board computers. The EPR (Electronic Pressure Regulation) selected for ESM has the advantage to optimize the pressure of propellant and oxidizer according to the engine in operation, at the price of an increased development risk for this function.

The EPR of the propulsion system propellant is a new technology for the European industry. The ATV design featured a mechanical pressure regulation like the propulsion system of the Shuttle OMS-E engine. The electronic pressure regulation allows a better control of the pressure, hence the fuel and oxidizer consumption is enabling to reduce propellant margins and the overall mass at launch. Airbus DS decided to venture in that new technology as a result of a trade-off taking into account the positive results obtained by Lockheed-Martin in breadboard testing. However, in the development of a new technology there is always the risk of not being successful especially if the development time is constrained.

To mitigate the impact to the project in case of unsuccessful development, it was decided to ensure that reverting to mechanical pressure regulation would be possible with minimum schedule impact. NASA provided Shuttle mechanical pressure regulators and valves to VACCO, the original manufacturer and Airbus DS ordered tests to ensure the hardware would satisfy the performance required for the ESM. Breadboard testing of the electronic regulation performed in Europe up to now delivered promising results and the probability of having to revert to mechanical pressure regulation is becoming more remote.

OrionEM1_Auto2B

Figure 20: Layout of the propulsion subsystem (image credit: ESA, Airbus DS)


EPS (Electrical Propulsion Subsystem): The EPS has the function to generate the power for all modules of Orion. It manages the power provided by its 4 SAW (Solar Array Wings). The PCDU (Power Control and Distribution Unit) provides the power I/F to the SAW and CMA, distributes electrical power to ESM users and protects the power lines.

The power generation part of the ESM EPS consists of four SAW units. Each wing is composed of three deployable CFRP (Carbon Fiber Reinforced Polymer) rigid panels covered with triple junction GaAs solar cells forming nine (9x) sections of solar cell strings. In nominal condition the SAW can supply a total 11.2 kW. Each SAW is linked to the ESM structure by a two degree of freedom SADA (Solar Array Drive Assembly). The SADA ensures the power and signal transfer from the SAW to the PCDU. It is composed of SADM (Solar Array Drive Mechanism) and a (SADE (Solar Array Drive). The SADM allows orienting the SAW in two independent axes. In the Sun-tracking mode the inner axis can swivel between -35º and +25º, while the outer axis has a continuous rotation capability (0º; +360º).

SADM of the ESM has a unique design incorporating a two axis gimbal. An inner axis provides rotation of the SAW about an axis perpendicular to the ESM longitudinal axis, and an outer axis which rotates the SAW about its own longitudinal axis. The two-axis capability is necessary for two reasons:

1) allow maximum sun tracking to meet the power requirements for particular vehicle attitudes of certain mission phases. Insufficient power is generated by the SAW with a single (roll) axis SADM not providing the avoidance capability of the shadowing effect of both the Orion vehicle on the SAW and the SAWs on each other

2) insure the structural integrity of the SAWs under injection maneuvers. For the trans-lunar injection performed with the upper stage of the Space Launch System rocket, actually the iCPS (interim Cryogenic Propulsion Stage), the arrays are canted backwards to sustain in deployed configuration the 1 g acceleration load. For the trans-earth injection performed with the ESM main engine, the acceleration is less severe and the arrays have to be canted forwards to prevent damages from the OMS-E engine plume while minimizing the load on the SAWs.

The SADM also allows repositioning (canting) of the SAW to reduce the loads on the SAW and SADM during the different Orion orbital maneuvers. At TLI (Trans-Lunar Injection), a 0.5 g acceleration is generated by the iCPS engine and at LOI (Lunar Orbit Insertion) and TEI (Trans-Earth Injection) a 0.3 g deceleration is generated by the OMS-E engine.

As shown in Figure 21, in order to reduce these loads to an acceptable level, the SAWs need to be repositioned by the SADM. In TLI, the SAWs are thus canted during the maneuver to inner axis = - 60º / outer axis = 0 º. In LOI/TEI, the SAWs are canted to inner axis = +55º / outer axis = 0º.

OrionEM1_Auto2A

Figure 21: Orion vehicle with ESM SAW canting angles (-60º / 0º @ TLI, +55º / 0º @ LOI/TEI), image credit: ESA, Airbus DS

The EPS distributes the generated power to the CMA/CM through four independent 120 V busses. The power interfaces of the PCDU protect each unregulated bus from overload or short circuit failures on feeder busses outside the PCDU. They are implemented with power devices connected in parallel and independently operated for power flow from PCDU to CMA PDU, plus a number of power diodes for power flow from CMA PDU to PCDU.


Avionics Subsystem: The high-level management of the vehicle and its functions is performed at the level of the Orion on-board computers. The ESM is controlled and monitored by specific electronic controller units. All units are connected via the ODN (Onboard Data Network) to the CMA/CM. All vehicle control and management software resides in the CM computers. The ODN is a three plane TTGbE (Time Triggered Gigabit Ethernet),1000Base-CX, according to standard SAE AS6802.

The Time-Triggered Gigabit Ethernet ODN provides a set of time-triggered services implemented on top of standard IEEE802.3 Ethernet. It provides the capability for deterministic, synchronous, and congestion-free communication, unaffected by any asynchronous Ethernet traffic load. By implementing this standard in network devices (network switches and network interface cards), Ethernet becomes a deterministic network. This means that distributed applications with mixed time-criticality requirements (e.g., real-time command and control, audio, video, voice, data) can be integrated and coexist on one Ethernet network.

Each of the ESM controller units is connected via a SNIC (Standard integrity Network-Interface Card), according to Honeywell ICD8273722, to the LAN switch located in the CMA. The SNICs have three ports for two failure-tolerant communication on three network redundancy planes.


Development: The challenging schedule of the program, with the ESM delivery planned for early 2017 and the EM-1 launch planned for 2018, is influencing the way the ESM is verified. Qualification has often to run in parallel to EM-1 flight model manufacturing and integration, bringing risk to the program. This risk is carefully monitored and risk reduction strategies are in place to ensure the program can proceed smoothly. The ESM verification is mostly accomplished at module level. A limited number of verifications is planned on the EM-1 flight model.

- The system PDR (Preliminary Design Review) was successfully concluded in the summer 2014.

- The system CDR (Critical Design Review) is scheduled for the end of2015 and will conclude with the board in February 2016.

• The decision to include an International Partner in the development of Orion is beneficial for NASA, enlarging the cooperation on human explorations and strengthening the international partnership.

• ESA also benefits of the ESM program because it allows to retain in Europe the experience acquired with ATV program, to participate to the exploration endeavour, and to develop additional capabilities for use toward future ESA missions.

• Both NASA and ESA, together with their industrial partners, are committed to that goal of achieving the program objective in spite of the complex interface management needed and of the challenging schedule.

Table 4: Summary of key aspects for an international partnership in the Orion program


Minimize Orion / EM-1 Continued


Development status of Orion EM-1 (Exploration Module-1) and ESM (European Service Module):

• September 18, 2018: Last week at the Airbus integration hall in Bremen, Germany, technicians installed the last radiator on the European Service Module for NASA’s Orion spacecraft marking the module’s finished integration. 13)

- ESA’s European service module will provide power, water, air and electricity to NASA’s Orion exploration spacecraft that will eventually fly beyond the Moon with astronauts. The European Service Module is now complete for Orion’s first mission that will do a lunar fly-by without astronauts to demonstrate the spacecraft’s capabilities.

OrionEM1_Auto29

Figure 22: Technicians instal the radiators on the European Service Module for NASA’s Orion spacecraft marking the module’s finished integration (image credit: ESA–A. Conigli)

- Much like closing the bonnet on a car, with the radiators in place technicians can no longer access the internals of the European service module, symbolically ending the assembly and integration of the module that will fly further into our Solar System than any other human-rated spacecraft has ever flown before.

- Technicians worked 24 hours a day in three shifts to complete the service module’s assembly which is now going through the last stages of its extensive testing. Engineers will put the module through its paces with functional tests that include checking the newly installed radiators and testing the propulsion system with its intricate pipelines that deliver fuel and oxidizer to the spacecraft’s 33 engines.

OrionEM1_Auto28

Figure 23: View from below: Orion European Service Module-1. Technicians work underneath the European Service Module for NASA’s Orion spacecraft, September 2018 (image credit: ESA–A. Conigli)

- Once complete the service module will be packed and flown to NASA’s Kennedy Space Center in Florida, USA. Orion’s solar wings will be shipped separately, also from Bremen. In the USA the module will be stacked together with NASA’s Crew Module Adaptor and Crew Module, the first time the complete spacecraft will be on display.

- More tests await the Orion spacecraft at NASA’s Plum Brook facility where it will be put in the world’s largest vacuum chamber to simulate spaceflight as well as being subjected to acoustic tests to simulate the intense vibrations Orion will endure when launched on the world’s largest rocket, NASA’s Space Launch Systems.

- Second module getting ready: Meanwhile technicians in Bremen are not resting as work on the second European Service Module is already well under way. The structure is complete and over 11 km of cables are being meticulously placed in preparation for the computers and equipment that will keep astronauts alive and well for the second Orion mission called Exploration Mission-2.

• August 16, 2018: Technicians at NASA's Kennedy Space Center (KSC) in Florida recently secured the heat shield to the bottom of the crew module, using 68 bolts. Designed and manufactured by Orion prime contractor, Lockheed Martin, the heat shield is like an intricate puzzle with pieces that all have to fit together perfectly. Before the final installation, a fit check was performed to ensure all of the bolt fittings lined up. 14)

OrionEM1_Auto27

Figure 24: Lockheed Martin engineers and technicians check fittings during installation of the heat shield to the Orion crew module July 25, 2018, inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida (image credit: NASA)

- "Installation of the EM-1 crew module heat shield is a significant milestone representing the beginning of closing out the crew module assembly," said Jules Schneider, Lockheed Martin Orion senior manager for KSC Operations. "When the heat shield is installed, access to components becomes more difficult, and in some cases there is no more access. So by installing the heat shield you are declaring that a certain percentage of the spacecraft is finished."

- Measuring 5.06 m in diameter, Orion's new heat shield is the largest of its kind developed for missions that will carry astronauts. The heat shield base structure has a titanium truss covered with a composite substrate, or a skin composed of layers of carbon fiber material.

- In a new process, several large blocks of an ablative material called Avcoat, licensed from Boston-based Textron Systems, were produced at Michoud Assembly Facility in New Orleans by Lockheed Martin. They were shipped to Kennedy, where Lockheed Martin technicians machined them into more than 180 unique blocks and bonded them to the heat shield's surface.

- To fill tiny gaps between the blocks, the seams were filled with a mixture that over time will become solid. Technicians applied a coat of white epoxy paint to the heat shield's surface and then applied aluminized tape after the painted surface dried. The tape provides surface resistivity, and absorbs solar heat and infrared emissions.

- While Avcoat isn’t new to spacecraft – it was used on the heat shields of Apollo and the Orion EFT-1 (Exploration Flight Test-1) – the technique of using blocks instead of injecting the ablative material is proving to be a real production time-saver.

- "A benefit of switching from the honeycomb system to the blocks is we now can make the Avcoat blocks at the same time that the Orion structure is being made, and when the module is ready we can secure the blocks, which saves time," said John Kowal, NASA Orion Thermal Protection System manager at Johnson Space Center in Houston. "Before, with EFT-1, we had to wait for the carrier portion to be done, and then apply the Avcoat directly to the crew module."

- During its first mission around the Moon, engineers will monitor how Orion’s systems perform in the environment of deep space and its return to Earth. During re-entry the ablative material of the Avcoat blocks will burn away, essentially carrying the heat away from Orion because of the gases created during the ablative process.

• June 6, 2018: At centers across NASA, the agency is rocketing ahead toward Exploration Mission 1 (EM-1) and Exploration Mission 2 (EM-2). 15)

- EM-1 and EM-2 are the final stages of a three-part mission series designed to establish NASA’s new Exploration Class human spaceflight capability. The first stage, Exploration Flight Test 1 (EFT-1), was completed in 2014 when a Delta IV Heavy rocket sent the uncrewed Orion capsule 3,600 miles from Earth.

- “It was the first time that we had flown a vehicle designed to carry humans that far away from Earth,” said Dr. Ellen Ochoa, former Johnson Space Center (JSC) director, speaking at JSC about ongoing efforts to expand manned deep space exploration. “[EFT-1] was testing the items that are really most critical for crew survival, including things like the parachute system and the heat shield. It made headlines not only around the country but around the world. And it’s really just a hint of things to come.”

- The next stage of the mission is EM-1. Scheduled for 2020, it will be the first integrated flight of Orion and the Space Launch System (SLS), the world’s most powerful launch vehicle. EM-1 will be followed by EM-2 in 2023: the first flight to unite crew with Orion and the SLS. EM-2 will take astronauts 40,000 miles past the moon—farther than any manned spacecraft has ever gone.

- Before EM-2 can get off the ground, the agency will conduct a flight test in 2019 called the Ascent Abort-2 (AA-2). The test will examine Orion’s launch abort system (LAS), which makes it possible to rescue the crew in the event of a catastrophic malfunction during launch.

- “It’s really the only full-scale system test that we have before we put crew on the vehicle. So it’s definitely critical for making sure that we can get the crew safely away in an emergency,” said Jennifer Devolites, AA-2 crew module deputy manager.

- For the three-minute test, the LAS will be launched from Cape Canaveral on a solid rocket motor providing 500,000 pounds of thrust (2224 kN) to propel the system six miles up to the abort condition. At that point, the crew module flight computers will send commands to light the abort motor rocket and separate the crew module from the booster.

- “When the abort motor fires, it pulls the crew module away from the booster extremely fast. After 1.1 seconds after abort, we’ve got greater than five F-22 fighter jets on full afterburners in terms of thrust,” said Devolites. “After 15 seconds, the crew modules gain more than two miles of altitude. At around 43,000 feet, the attitude control motor starts to reorient the system. And then after reorientation is complete, the LAS separates to allow the capsule to descend safely back to Earth.”

- Work on the rest of the Orion spacecraft is moving forward as well. “Orion is more than just a crew module. It’s a complex set of systems—life support, propulsion, thermal control,” said Annette Hasbrook, assistant manager for Orion Program Integration. “Down at the Kennedy Space Center, we’re making great progress. That is our production facility and that’s where we’re assembling the Exploration Mission 1 spacecraft.”

- Below the crew module sits the ESM (European Service Module), which is being provided by ESA (European Space Agency). “The ESM is being assembled in Bremen by the Airbus Corporation,” said Hasbrook. “They are in almost final assembly and test and will be bringing that service module, delivering it to the Kennedy Space Center later this summer. Once that arrives, we have a 404-day timeline from the time we bring it in until we turn it over to the ground systems at Kennedy Space Center for final integration onto the amazing SLS rocket for launch.”

- The agency is also in build for EM-2. “We have multiple vehicles in flow, and the Exploration Mission 2 spacecraft is currently under assembly at the Michoud Assembly Facility down in Louisiana. They’re building their primary structure and that’s going to be delivered to KSC later this summer to begin its integration,” Holbrook added.

- While work continues on Orion and the SLS, NASA is also making plans to build the Lunar Orbital Platform-Gateway in the 2020s. This manned spaceport, which will be constructed on orbit, will include a power and propulsion element as well as habitation, logistics, and airlock capabilities.

- “NASA and its partners will use the Gateway for deep space operations, including missions on the moon, with decreasing reliance on Earth. We’ll use the lunar orbit as a place to stage: where we will actually build up a small crew-tended spaceport that will then do testing. We will learn about what’s going on at the moon, we’ll do testing on the moon surface, and then we will build up, do other testing, and move on to Mars,” said Vanessa Wyche, director of the Exploration Integration and Science Directorate at JSC.

- The power and propulsion element for the Gateway is being led by NASA/GRC (Glenn Research Center). The habitation systems are in design, with concepts being worked by five commercial partners. “Of those five companies, there are two that are going to do ground testing here at the Johnson Space Center. We’re readying ourselves for the hardware to show up so that we will test it. That will happen next summer,” added Wyche.

- At JSC, the work for EM-1 and EM-2 is being conducted using a “lean development” approach. “That’s been really one of the goals of this project as well. To look at how we can do things differently. Find more efficiencies,” said Devolites.

- One of the areas they have focused on is developing a team culture that encourages people to innovate. “We also reduce cost and schedule through iterative systems engineering,” said Devolites. “By doing that, we actually had 90% of our flight software complete by the time we got to our Critical Design Review because of all the early integrated testing that we did. And we also used an agile software development process for that.” Additionally, the center employs a data-centric, online collaborative system to enhance systems engineering and team communication. This has produced two important results: less paperwork and fast decision-making.

- While the focus of EM-1 and EM-2 is on advancing human spaceflight farther than ever before, the mission benefits can be felt on Earth as well. NASA’s work on Orion and the SLS is supported by companies in 49 of the 50 states. These efforts are fueling industries and technology development across the nation, helping advance job opportunities and workforce skill development.

• April 23, 2018: The European service module that will provide power, water, air and electricity to NASA’s Orion Moon module has taken a large step closer to completion with the installation of its fuel tanks and testing of its solar wings. 16)

- The large tanks that will provide propellant for the spacecraft are now fitting snugly inside the spacecraft at the Airbus assembly hall in Bremen, Germany.

OrionEM1_Auto26

Figure 25: The large tanks that will provide propellant for the spacecraft are now fitting snugly inside the spacecraft. The four tanks will each contain about 2000 liters of propellant. In the vacuum of space there is no air to burn so spacecraft fuel tanks include oxidizer and fuel that are mixed to ignite and provide thrust (image credit: Airbus)

Legend to Figure 25: The two sets of tanks are connected by intricate pipelines to 33 engines. Sensors and computers control the system. The European service module is a small but complex spacecraft packed with equipment. The large tanks are installed as one of the last components to allow technicians more room to work.

- Meanwhile the solar arrays Orion will use to produce electricity are being tested at ESA’s technical heart in the Netherlands. Folded for launch, the fragile solar panels need to survive the rumbling into space aboard the most powerful rocket ever built, NASA’s Space Launch System.

- Orion’s solar panels will be folded inside the rocket fairing on the first leg of the trip around the Moon. Once released from the rocket they will unfold and rotate towards the Sun to start delivering power.

- To make sure the solar panels will work after the intense launch, ESA engineers are putting them through rigorous tests that exceed what they will experience on launch day. This includes vibrating them on a shaking table and placing them in front of enormous speakers that recreate the harsh launch conditions.

• April 20, 2018: A few multi-layer windows on a spacecraft provide astronauts the view they may need for navigating space and carrying out their exploration mission with visual data. NASA is working to improve the durability of those windows, and reduce cost and weight, while maintaining the clarity astronauts need to carry out their tasks and view the Earth and other destinations as they travel farther into the solar system. 17)

- The space shuttle used only glass panes for its primary windows. While these provided good optical quality, they added costly mass to the spacecraft. Modern spacecraft windows incorporate acrylic and other plastics that are lighter, stronger and less brittle, but often provide lower quality optical properties.

OrionEM1_Auto25

Figure 26: Inside a laboratory in the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida, Mark Nurge, Ph.D., at left, a physicist in the Applied Physics Lab with the center's Exploration Research and Technology Programs, and Bence Bartha, Ph.D., a specialist in non-destructive testing with URS Federal Services, are performing the first optical quality testing on a full window stack that is ready for installation in the docking hatch of NASA's Orion spacecraft. The data from the tests will help improve the requirements for manufacturing tolerances on Orion's windows and verify how the window should perform in space. Orion is being prepared for its first integrated uncrewed flight test atop NASA's Space Launch System rocket on Exploration Mission-1 (photo credit: NASA/Amanda Griffin)

• March 6, 2018 (update), Jan. 5, 2018: Engineers preparing NASA’s deep space exploration systems to support missions to the Moon, Mars, and beyond are gearing up for a busy 2018. The agency aims to complete the manufacturing of all the major hardware by the end of the year for EM-1 (Exploration Mission-1), which will pave the road for future missions with astronauts. Planes, trains, trucks and ships will move across America and over oceans to deliver hardware for assembly and testing of components for the Orion spacecraft and the SLS (Space Launch System) rocket while teams at NASA’s Kennedy Space Center in Florida prepare the Ground Systems infrastructure. Testing will take place from the high seas to the high skies and in between throughout the year and across the country, not only in support of EM-1, but also for all subsequent missions.18)

• March 5, 2018: With the arrival of the Orion crew module to be used in the Ascent Abort-2 test at Johnson Space Center in Houston, the team is already at work with a lean, iterative development approach to minimize cost and ensure the flight test stays on schedule. 19)

- The approach involves considering how to do things differently, finding ways to execute elements of the buildup more efficiently and pushing on the norms of doing business to see if there are areas where productivity can be enhanced.

- Engineers and technicians at NASA/LaRC (Langley Research Center) in Hampton, Virginia modified a previously built Orion test vehicle for the flight. Development hardware from the Pad Abort-1 test is being reused and components such as radio frequency transmitters have been repurposed to support characterization and integrated tests. Shuttle heritage hardware, such as pyrotechnic control cards that otherwise were not being used, are being integrated into flight designs which allows the team to avoid building or building everything new. Flight and ground software architectures have been evolved from other development projects.

- Engineers involved in outfitting the crew module simultaneously are being trained to be flight controllers who will supervise the test when it launches from Cape Canaveral Air Force Station in Florida. Since the engineers involved in the work are extremely knowledge about the vehicle’s systems, they are being trained as operators and builders at the same time.

- Several milestones lay ahead of the team now that the crew module has arrived at Johnson. In the spring, various subsystem elements will be incorporated into the vehicle. In June, it will be powered “on” for the first time to ensure all the proper connections are made and the vehicle can execute its flight profile. After testing and verification, the crew module will be attached to a test rig and rotated sideways so engineers can once again measure mass and center-of-gravity. These attributes must mirror those projected for the first Orion with crew to ensure the AA-2 crew module will provide representative data.

- “We’re going to integrate hundreds of elements into the crew module,” said Jon Olansen, manager of the Ascent Abort-2 test crew module. “To get the vehicle ready to execute this critical test for future crew safety, we will install the avionics, power and communication components, the guidance, navigation and control instruments, all the interconnecting electrical wiring, and load the software to control it all. We will also install the flight instrumentation and data retrieval systems and a variety of sensors that will collect data essential for characterizing the performance of the vehicle during and after an abort.”

- Once complete, the crew module will be sent to NASA Glenn’s Plum Brook Station in Ohio, where it will undergo testing in an acoustic chamber to characterize how the structure will react to the abort environment. While the crew module is at Plum Brook, a separation ring that will connect the capsule to its booster will arrive at Johnson and be outfitted with wiring and other necessary elements. The crew module will return to Johnson in September and be mated with the separation ring before the two elements are then tested together and shipped to Kennedy Space Center in December.

- NASA’s work to build the test article and execute the flight test is a combined effort between the Orion Program and Advanced Exploration Systems Division at NASA Headquarters in Washington.

OrionEM1_Auto24

Figure 27: Technicians lower the crew module for Ascent Abort-2 onto a stand at Johnson Space Center in Houston on March 2 (image credit: NASA, Robert Markowitz)

• February 16, 2018: When NASA's Orion spacecraft launches into space atop the agency's Space Launch System rocket on its first uncrewed integrated flight, Exploration Mission-1, it will travel thousands of miles beyond the Moon and return to Earth for splashdown in the Pacific Ocean. While traveling to deep space, Orion will experience extreme hot and cold temperatures, with re-entry temperatures nearing 5,000 degrees Fahrenheit (~2700ºC). 20)

- Before Orion is exposed to the harsh conditions of launch, deep space and re-entry, it is being prepared and tested inside the Neil Armstrong Operations and Checkout Building high bay at Kennedy Space Center in Florida.

- The Orion Program successfully completed a thermal cycle test on the Orion crew module inside a specially constructed thermal cycle chamber in the airlock of the high bay. Over the next five days, the crew module was rapidly cycled between hot and cold temperatures to thermally stress the hardware and ensure the workmanship of the crew module's critical hardware and its subsystem operations. The cycle of temperatures for the initial thermal test ranged from 29º to 129ºF (-1.66ºC to 53.9ºC) during 105 hours of testing.

- "Our goal was to expose the vehicle to rapid changes in temperature to see how Orion and its systems performed," said Rafael Garcia, Orion Program Test and Verification lead. "When the test was completed, we found no major issues."

- NASA and Lockheed Martin engineers in three different areas conducted and monitored the test, including the team in the high bay near the chamber controls, the ground test instrumentation readout area, and the Test and Launch Control Center, where system managers powered on and monitored the crew module's subsystems.

- A thermal cycle test of Orion's integrated crew and service module, along with electromagnetic interference and compatibility testing, is scheduled for early next year at NASA Glenn's Plum Brook Station in Sandusky, Ohio. While testing at Kennedy helps ensure Orion is ready for EM-1, Plum Brook facilities can simulate more extreme conditions and will help validate the integrated spacecraft design for future missions. The service module is the powerhouse of the spacecraft, providing it with the electricity, propulsion, thermal control, air and water it will need in space.

- During EM-1, the Orion crew module structure will reach temperatures ranging from minus 300 F to plus 250 F (-184ºC to +121ºC) depending on the Sun’s angle on its way to the Moon.

• February 14, 2018: Construction of the living and working area for the first crewed Orion spacecraft is well underway at the Michoud Assembly Facility (MAF) in New Orleans. Building on lessons learned from previous construction, Orion prime contractor Lockheed Martin has already completed four of the seven welds necessary to assemble the crew module pressure vessel. 21)

- Current schedules call for the completed pressure vessel to be shipped in September to the Kennedy Space Center (KSC) in Florida, where it will be outfitted to fly on EM-2 (Exploration Mission-2).

OrionEM1_Auto23

Figure 28: EM-2 welding taking place at MAF (image credit: NASA)

• October 12, 2017: While engineers in Europe continue to outfit the Orion spacecraft’s service module for EM-1 (Exploration Mission-1) in preparation for shipment to NASA’s Kennedy Space Center in Florida next year, work is already beginning on the service module that will power, propel, cool and provide air and water for the first crewed mission in the Orion spacecraft in the early 2020s. Technicians at Thales Alenia in Turin, Italy, are working on the primary structure of the European Service Module that will carry astronauts in Orion beyond the Moon during EM-2 (Exploration Mission-2). ESA (European Space Agency) and its contractors are providing Orion’s service module for its first two missions atop the Space Launch System rocket. NASA is leading the next steps in human space exploration and will send astronauts to the vicinity of the Moon to build and test the systems needed for challenging missions to deep space destinations including Mars. NASA is working with domestic and international partners to solve the great challenges of deep space exploration. 22) 23) 24)

OrionEM1_Auto22

Figure 29: Work progresses on Orion Powerhouse for Crewed Mission (image credit: NASA, Rad Sinyak)

• August 24, 2017: Engineers at Lockheed Martin and NASA breathed life into the next Orion crew module when they powered up the spacecraft for the first time at the Kennedy Space Center, Florida. Designed for human spaceflight, this Orion will be the first to fly more than 60,000 km beyond the Moon during its nearly three-week EM-1 (Exploration Mission-1), a feat that hasn't been possible before. 25) 26)

- "Orion was designed from the beginning to take humanity farther into space than we've ever gone, and to do this, its systems have to be very robust and reliable," said Mike Hawes, vice president and Orion program manager at Lockheed Martin. "Over the last year, we've built great momentum in assembling the crew module for EM-1. Everyone on the team understands how crucial this test campaign is, and more importantly, what this spacecraft and mission means to our country and future human space flight."

- The initial power-on event was the first time the vehicle management computers and the power and data units were installed on the crew module, loaded with flight software and tested. Evaluating these core systems, thought of as the "brain and heart" of the Orion capsule, is the first step in testing all of the crew module subsystems.

- Although astronauts will not fly in this capsule on this flight, a large majority of the subsystems and avionics are the same design that astronauts will rely on during following missions with Orion into the solar system. Launching on NASA's Space Launch System — the most powerful rocket in the world — the EM-1 flight is critical to confirming the Orion spacecraft and all of its interdependent systems operate as designed in the unforgiving environment of deep space.

- With the successful initial power on behind them, engineers and technicians will now continue integrating the 55 components that make up the spacecraft avionics suite, connecting them with nearly 400 harnesses. Over the course of the next two to three months, as each system is installed, they will perform thorough functional tests to ensure Orion is ready to move to the all-important environmental testing phase.

May 12, 2017: NASA managers have ruled out putting a crew on board an Orion capsule atop the agency’s huge Space Launch System rocket for the gargantuan booster’s maiden flight in 2019, citing technical risks and higher costs, up to as much as $900 million, agency officials said at a news conference on May 12, 2017. 27) 28)

- In February 2017, the Trump administration asked NASA to look into the possibility of either adding a crew to the EM-1 (Exploration Mission 1), or moving up the launch of EM-2, the flight NASA already earmarked for the SLS (Space Launch System) booster’s first piloted mission. That flight is targeted for launch in the 2021 timeframe. 29)

- The NASA study concluded that while it would be possible to upgrade the Orion spacecraft to accommodate a crew for the EM-1 flight — equipping it with life support systems, crew displays, a validated launch abort system and other critical elements — it would have required an additional $600 million to $900 million in funding. - And there would be additional technical risk and likely delays to accelerate software development and to retrofit the EM-1 Orion capsule to support a two-person crew.

- As a result, acting NASA Administrator Robert Lightfoot said agency managers and White House officials agreed it made more sense to stick with the original plan, launching an uncrewed Orion capsule atop the first SLS booster in 2019, followed by a piloted mission using an upgraded version of the rocket two years later.

- And so, NASA will stick with plans to launch a “Block 1” SLS rocket in 2019 to boost an unpiloted Orion capsule on a three-week flight beyond the moon and back to a high-speed reentry and ocean splashdown.

- The launch date recently slipped from late 2018 to 2019 — the exact date is TBD — because of a variety of factors, including manufacturing delays caused by recent tornado damage at the Michoud Assembly Facility near New Orleans where the SLS rocket is being built.

- In any case, EM-2, featuring an astronaut crew, would be launched atop a Block 1B SLS rocket in the late 2021 timeframe. Unlike the EM-1 rocket, the Block 1B version of the SLS would feature a more powerful, human-rated EUS (Exploration Upper Stage).

- The long-range plan is to use the SLS to send astronauts beyond the moon in the mid 2020s before eventual flights to Mars.

- The long gap between the SLS’s initial test flight and the piloted EM-2 mission, driven in large part by NASA’s budget and a variety of technical hurdles, has raised concerns in some quarters about maintaining public and congressional support in a program with years between flights and competing demands on agency funding.

- Lightfoot said there have been no discussions with the administration about near-term astronaut flights to Mars. Just getting EM-1 off the ground will be difficult enough. The Government Accountability Office concluded last summer that NASA will have spent some $23 billion through EM-1 developing the SLS rocket, the Orion capsule and ground infrastructure.

- Putting a crew aboard would have driven that cost even higher. “We needed additional funding, and we needed additional time,” said Bill Gerstenmaier, NASA’s director of space flight. “We knew both of those had to be there, because we had certain components that just were not there. We didn’t have crew displays, we didn’t have an active abort system, we didn’t have an active life support system. So we knew those had to get added in.”

- In its initial configuration, the SLS Block 1 rocket will be made up of two shuttle-heritage five-segment solid-fuel boosters provided by Orbital ATK and a huge Boeing-built first stage powered by four hydrogen-burning RS-25 space shuttle main engines provided by Aerojet Rocketdyne.

- The Block 1 version features an interim upper stage derived from Boeing’s Delta 4 rocket powered by a single hydrogen-fueled Aerojet Rocketdyne RL-10B2 engine. That upper stage is not currently human rated.

- The NASA study concluded that while it would be possible to upgrade the Orion spacecraft to accommodate a crew for the EM-1 flight — equipping it with life support systems, crew displays, a validated launch abort system and other critical elements — it would have required an additional $600 million to $900 million in funding. - And there would be additional technical risk and likely delays to accelerate software development and to retrofit the EM-1 Orion capsule to support a two-person crew.

Table 5: NASA affirms existing plan for first mission of SLS, Orion 27) 28) 29)

• April 6, 2017: Curtiss-Wright's Defense Solutions division has successfully delivered eight of the nine data acquisition flight units that it is building for use on NASA's Orion spacecraft planned for use in EM-1 (Exploration Mission-1), Orion's second test flight in space. 30)

- For the Orion EM-1 flight, Curtiss-Wright supplies its MnACQ-2000 Miniature Network Data Acquisition System, a compact, stackable Fast Ethernet 100BASE-T-based networked encoding unit that processes and delivers packetized instrumentation data to designated network nodes. Each of the nine rugged COTS-based units built for Orion EM-1 includes a radiation tolerant power supply, system management overhead and the specific signal conditioning modules needed to address the number and type of measurements needed during flight.

- Two 12-Port Ethernet switches that tie the system together and route the data and video have also been delivered for the Orion EM-1 flight. Curtiss-Wright expects to deliver the ninth and final MnACQ-2000 by the end of June 2017.

• February 27, 2017: ESA’s contribution to NASA’s Orion spacecraft is the European Service Module, providing the spacecraft with its main power source and propulsion mechanism. Designed by Airbus Defence and Space and assembled by OHB Sweden, the Propulsion Qualification Model was shipped to the NASA’s White Sands facility in January. 31)

- The model is now set up and awaiting extensive testing by NASA, ESA and Airbus. Its 21 engines, including the Shuttle OMS (Orbital Maneuvering System) engine, eight auxiliary thrusters and 12 smaller thrusters will undergo ‘hot firing’, in which all engines will be ignited.

OrionEM1_Auto21

Figure 30: The European propulsion system of the Orion spacecraft has been installed at NASA’s White Sands Test Facility in New Mexico and is ready for testing (image credit: NASA)

• February 16, 2017: Airbus DS has signed a new contract with ESA (European Space Agency) for the construction of the second European service module (ESM) for NASA’s Orion spacecraft. The contract is worth around € 200 million. The ESM is a key element of Orion, the next-generation spacecraft that will take astronauts beyond LEO (Low Earth Orbit) for the first time since the end of the Apollo program. 32)

• In mid-January 2017, Airbus Defence and Space delivered to NASA a propulsion test module for the Orion program. The PQM (Propulsion Qualification Test Model) will be used to check that the Orion ESM (European Service Module) spacecraft’s propulsion subsystem functions correctly. On behalf of ESA, Airbus DS is the prime contractor for the ESM, a key element of NASA’s next generation Orion spacecraft. 33)

- Although the PQM will never see space, this is an important step in the development of the Orion program. Complex systems for human spaceflight must first be tested and qualified on Earth before being used as flight hardware in space. The engineers want to determine how the system behaves in different environments, to ensure that it functions properly.

- The test module is travelling via Bremerhaven and Houston / USA to its final destination at NASA’s WSTF (White Sands Test Facility) near Las Cruces in New Mexico / USA. Arrival is expected mid-February. The tests will take place later in the year at WSTF for the qualification of Orion ESM’s propulsion subsystem.

• On December 12, 2016, ESA handed over ownership of the Orion European Service Module test article to NASA at the agency’s Plum Brook facility in Sandusky, Ohio – marking the end of individual testing for the structure. 34)

- The module sits directly below Orion’s crew capsule and provides propulsion, power, thermal control, and water and air for four astronauts. The solar array spans 19 m and provides enough electricity to power two households.

- From a design perspective, the launch is one of the most demanding moments in a mission. Orion will sit atop the SLS (Space Launch System) and more than 2500 tons of propellant. The vibrations and forces are intense until they reach the relative calm of space.

- To ensure the service module can withstand these forces, it is placed on a large table that shakes and moves to recreate the vibrations of launch. Almost 1000 sensors monitor how the 35 ton spacecraft flexes and withstands the stress. The blue wires carry the data during the tests for later analysis.

- The tests are running smoothly and the first flight model is already being built in Bremen, Germany. It will be shipped to the USA next year for more testing and final integration ahead of launch at the end of 2018.

OrionEM1_Auto20

Figure 31: This test article of the Orion ESM has the same structure and mass as the real thing but does not include the electronics and engines. It is being used to confirm the design before starting to build the flight version (image credit: ESA)

• January 2, 2017: A former space shuttle OMS-E (Orbital Maneuvering System-Engine) has been delivered to Germany for attachment to the European-built service module destined to steer NASA’s next Orion spacecraft (EM-1) on a course around the moon on an uncrewed test flight in late 2018. 35)

- The engine was refurbished and reassembled at NASA’s White Sands Test Facility in New Mexico, then shipped to Johnson Space Center in Houston for shake testing and returned to White Sands for leak tests, according to an ESA (European Space Agency) blog post. 36)

- It flew from Dallas/Fort Worth International Airport to Frankfurt last month, and then continued its journey by truck to Airbus Defense and Space’s spacecraft assembly facility in Bremen, Germany, ESA said.

- ESA is providing the service modules for at least the next two Orion missions — an unpiloted shakedown cruise in lunar orbit scheduled to lift off in November 2018, and the first Orion flight with astronauts on-board in the early 2020s.

- European governments agreed to pay for the service module for the 2018 flight, named EM-1 (Exploration Mission-1), at a meeting of government ministers in December 2012. ESA member states last month committed funding for a second service module for EM-2 (Exploration Mission-2), which will carry up to four astronauts farther than the moon’s orbit as soon as 2021.

OrionEM1_Auto1F

Figure 32: Orion’s service module engine, OMS-E, undergoes vibration testing at NASA/JSC (Johnson Space Center) in Houston (image credit: NASA)

- The service module has 33 engines and thrusters to control the Orion capsule’s orientation and adjust its trajectory after launch. The main engine for EM-1 is a refurbished OMS-E (Orbital Maneuvering System-Engine) that flew on 19 space shuttle missions.

- The OMS engines were mounted on pods on each side of the shuttle’s vertical tail, used to change the craft’s orbit and begin the spaceship’s trip back to Earth with a de-orbit burn.

- The ESM (European Service Module) has 33 engines and thrusters to control the Orion capsule’s orientation and adjust its trajectory after launch. The main engine for EM-1 is a refurbished Orbital Maneuvering System engine that flew on 19 space shuttle missions (Figure 33).

- The OMS engines were mounted on pods on each side of the Shuttle’s vertical tail, used to change the craft’s orbit and begin the spaceship’s trip back to Earth with a de-orbit burn. - The engines burn hydrazine and nitrogen tetroxide propellants, and were each designed for 100 missions and rated for multiple restarts on each flight. Aerojet Rocketdyne built the OMS engines, which provide around 26.6 kN of thrust in vacuum.

- The OMS engine slated to launch on EM-1 flew on the shuttle Challenger, Discovery and Atlantis in its career. Its first launch was on the STS-41G mission in October 1984, and its last shuttle mission was STS-112 in October 2002.

OrionEM1_Auto1E

Figure 33: The Shuttle Atlantis touches down at KSC’s Shuttle Landing Facility runway on Oct. 18, 2002. One of the OMS engines mounted on each side of the tail will fly on Orion’s EM-1 mission beyond Earth orbit in late 2018 (image credit: NASA)

- The European-built service module is in the “critical path” for EM-1 to remain on track for its launch readiness window, which runs from September through November of 2018. The service module is due for delivery to NASA/KSC (Kennedy Space Center) in Florida in April 2017 — after engineers in Germany add the OMS engine and propellant tanks to the already-finished primary structure.

- At KSC, ground crews will connect the service module with the Orion crew module, then ship the spacecraft to NASA’s Plum Brook Station in Ohio by the end of 2017 to subject it to the extreme temperatures and vacuum conditions it will encounter in space.

- The craft will return to KSC in early 2018 for final assembly steps, including the spacecraft’s fueling and the addition of the Orion launch abort system before the stack is mounted on top of NASA’s SLS (Space Launch System) inside the Vehicle Assembly Building for rollout to launch pad 39B.

OrionEM1_Auto1D

Figure 34: Artist's rendition of the Orion spacecraft with the European-built service module (image credit: NASA)

• December 7, 2016: ESA and NASA are extending their collaboration in human space exploration following confirmation that Europe will supply a second Service Module to support the first crewed mission (EM-2)of the Orion spacecraft. The mission is set for launch from NASA’s Kennedy Space Center in Florida, USA, as early as 2021 and will include up to four astronauts – the first time humans have left low orbit since 1972. Crew size and composition will be determined closer to launch. 37)

• Nov. 21, 2016: The processing activity at NASA/KSC (Kennedy Space Center) in Florida has ramped up in preparation for the agency’s launch of the Orion spacecraft atop the SLS (Space Launch System) rocket on its first deep space mission, Exploration Mission 1 (EM-1). The Orion CMA (Crew Module Adapter) for EM-1 was lifted for the first and only time, Nov. 11, during its processing flow inside the Neil Armstrong Operations and Checkout (O&C) Building high bay at KSC. 38)

- The CMA will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch on the SLS rocket on EM-1 scheduled for late 2019.

OrionEM1_Auto1C

Figure 35: Image of the CMA uplift on Nov. 11. The CMA is now undergoing secondary structure outfitting (image credit: NASA, Glen Benson)

• Sept. 19, 2016: The Orion heat shield that will protect the Orion crew module during re-entry after the spacecraft’s first uncrewed flight atop NASA’s Space Launch System rocket in 2018 arrived at the agency’s Kennedy Space Center in Florida on on August 25. It was transported to the Shuttle Landing Facility, which is managed and operated by Space Florida, aboard NASA’s Super Guppy aircraft. 39)

- The shipping container with the heat shield inside was offloaded and transported to the Neil Armstrong Operations and Checkout (O&C) Building high bay where technicians uncrated and secured it on a stand to begin the work to prepare it for Orion’s next test flight, known as EM-1 (Exploration Mission-1).

- The heat shield was designed and manufactured by Lockheed Martin in the company’s facility near Denver. Orion’s heat shield will be capable of withstanding temperatures of up to 2750ºC during reentry into Earth atmosphere. The heat shield measures 5 m in diameter, making it the largest of its kind.

OrionEM1_Auto1B

Figure 36: Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, technicians assist as a crane lifts the Orion heat shield for EM-1 away from the base of its shipping container (image credit: NASA, Dimitri Gerondidakis)

• June 27, 2016: NASA and ESA conducted a CDR (Critical Design Review) culminating in a final review board June 16 for Orion’s European-built service module (Figure 37). The service module is an essential part of the spacecraft that will power, propel, and cool Orion in deep space as well as provide air and water for crew members. The CDR rounds out the latest in a series of reviews for the three human exploration systems development programs that will enable the journey to Mars. 40)

- The recently completed review focused on the overall service module design while discussing differences between Orion’s first deep space mission atop the SLS (Space Launch System) rocket and the mission to follow that will carry crew. No new major issues were identified during the review, and the teams worked together to develop a plan for work going forward in areas such as power, solar array management and propellant usage.

- “The teams at NASA and ESA worked together successfully over the past few weeks to bring design decisions and required products to the CDR board,” said William Gerstenmaier, associate administrator for NASA’s Human Exploration and Operations Mission Directorate. “International collaboration is an important part of the effort NASA is leading to pioneer deep space.”

- The review was conducted at ESA/ESTEC (European Space Research and Technology Center) in Noordwijk, the Netherlands with teams from NASA, ESA, Lockheed Martin and Airbus Defence & Space in Bremen, Germany. Lockheed Martin is NASA’s main contractor building Orion, and Airbus is ESA’s contractor for the service module.

- The CDR identified April 2017 as the target for the service module delivery to Kennedy Space Center in Florida. Teams will begin integrating hardware into the rocket before the service module is delivered, and NASA plans to continue to optimize processing when it arrives at Kennedy. Initial results maintain EM-1 launch date no later than November 2018.

• May 25, 2016: Replicating the thunderous noise of a rocket launch is no easy task, but engineers at NASA Glenn’s Plum Brook Station in Sandusky, Ohio are mimicking the launch environment the Orion spacecraft will experience on a 2018 mission beyond the moon. They recently concluded a series of tests on a structural representation of the Orion service module to help ensure it can withstand the force and pressure of the acoustics environment it will experience as it makes its way from the launch pad to space atop NASA’s Space Launch System rocket. 41)

- Orion’s service module is a critical piece of the overall spacecraft. Provided by ESA (European Space Agency) and built by Airbus Defence & Space, the 13 ton component will be responsible for propelling, powering and cooling the vehicle, as well as providing air and water for its eventual crew.

- When a powerful rocket launches, it can produce noise of up to 180 decibels, levels so high that it can vibrate and damage spacecraft components if they aren’t designed and built to be strong enough to withstand the environment. For comparison, a person standing about 100 m away from a jet taking off would experience approximately 130 decibels of sound pressure, and for every additional 10 decibels, sound intensity increases 10-fold.

- While engineers have designed Orion components to endure a range of harsh environments like launch and missions in space, testing on the ground helps to validate computer modeling predictions. “Orion is undertaking an unprecedented mission, so the acoustics testing we’ve done is helping us make sure the service module will fare as we expect it to,” said Aron Hozman, lead engineer for the acoustics testing campaign.

- Engineers performed numerous evaluations at different decibel levels over the course of several weeks in Plum Brook Station’s Reverberant Acoustic Test Facility. The facility is the world’s most powerful spacecraft acoustic test chamber. In it, a series of modulators or horns embedded on one of the facility’s walls and supporting subsystems such as a gaseous nitrogen generation system and a hydraulic supply system were used to modulate noise and produce a wide range of acoustic spectra.

- The series of testing was done in two configurations – one with “wet” tanks where the service module’s propellant tanks were filled with a simulant that modeled the density of Orion fuel, and with them empty to determine if the noise affected the structure differently. The maximum test with fuel simulant lasted approximately three minutes. Engineers also used the testing to help qualify the service module’s solar array wing. They placed a microphone inside the test article and determined that the noise in the test chamber matched the expected acoustic environment inside the service module where the wing is housed.

- The service module structural test article will next move to Plum Brook Station’s Mechanical Vibration Facility, a powerful spacecraft shaker system that will help assess the component’s ability to withstand the tremor that an SLS launch will produce. As these ground tests continue to validate the service module’s design, the first flight unit service module for EM-1 is now being built in Europe. This unit, which will be built by the same teams who built the structural test article, recently arrived to Airbus’ facility in Bremen, Germany for integration. It is expected to be shipped to the United States in 2017.

• May 19, 2016: Airbus DS has started assembling the ESM (European Service Module), a key element of NASA’s next-generation Orion spacecraft that will transport astronauts into deep space for the first time since the end of the Apollo program. Integrating more than 20,000 parts and components in the ESM flight model ranging from electrical equipment to rocket engines, solar arrays, tanks for propellant and life support consumables as well as hundreds of meters of cables and tubes marks a major milestone for the Orion program. After the arrival of the flight model structure from Thales Alenia Space Italy the assembly is being carried out at Airbus Defence and Space’s site at Bremen, Germany, where officials from ESA, NASA, Airbus Defence and Space and partners gave an update on the Orion program’s progress on May 19. 42)

- The ESM is cylindrical in shape and about four meters in diameter and in height. It features the ATV’s (Automated Transfer Vehicle) distinctive four-wing solar array (19 m across unfurled) that generates enough electricity to power two households. Its 8.6 tons of propellant will power one main engine and 32 smaller thrusters. The ESM has a total mass of just over 13 tons. In addition to the main propulsion capability for the Orion spacecraft, the ESM will perform orbital maneuvering and attitude control functions. It also provides the main elements of the life support system such as water and oxygen for the crew while providing power and thermal control while it is docked to the crew module. The unpressurized service module can also be used to carry additional cargo.

• May 11, 2016: The EM-1 has passed a critical series of proof pressure tests which confirm the effectiveness of the welds holding the spacecraft structure together. Lockheed Martin, the manufacturer of the Orion crew module, ran the test at incremental steps over two days to reach the maximum pressure. During each step, the team pressurized the chamber and then evaluated the data to identify changes for the next test parameter. The results revealed the workmanship of the crew module pressure vessel welds and how the welds reacted to the stresses from the pressurization. 43)

• April 29, 2016: The first European hardware to arrive at NASA for Orion is the ESM (European Service Module) structural test article. This test version of the service module has the same mass and configuration as the real thing and will undergo advanced testing at NASA’s Plum Brook Station in Ohio, USA. 44)

OrionEM1_Auto1A

Figure 37: Photo of the European Structural Test Article which undergoes testing in NASA's acoustic test facility in Plum Brook, Ohio, USA (image credit: NASA)

• On 29 February 2016, a test model of Orion’s solar array was unfolded at NASA’s Plum Brook Station test facility in Sandusky, Ohio to check everything works as expected. The solar panels were made by Airbus Defence and Space in the Netherlands for the ESA module that will supply power and life support for up to four astronauts. 45)

- Each wing stretches more than 7 m, folded inside the SLS (Space Launch System's) rocket of NASA that will launch the spacecraft on its first unmanned mission in 2018. Orion sports four wings of three panels with 1242 cells per panel to provide 11.1 kW of power – enough to run two typical European households. The distinctive X-wings are an evolution and improvement of ESA’s ATV (Automated Transfer Vehicle).

- The test was passed with flying colors as the 260 kg array unfurled into its flight configuration. The stresses of flying to the Moon and beyond – and back again – mean the array is designed to bend up to 60º forward and backward, much like a bird in flight.

OrionEM1_Auto19

Figure 38: Photo of the Orion wing array unfolding test at NASA's Plum Brook Station (image credit: ESA)

• Feb. 2. 2016: NASA’s unique Super Guppy aircraft, loaded with the structural backbone for NASA’s next Orion crew module, swooped in for a landing at the KSC (Kennedy Space Center) on Feb. 1, 2016 (coming from NASA’s Michoud Assembly Facility in New Orleans). Orion’s arrival at KSC marks a major milestone on the road to starting NASA’s ‘Journey to Mars’ initiative. 46)

- This Lunar Orion vehicle is destined for blastoff to the Moon in 2018 on NASA’s EM-1 (Exploration Mission-1) atop the agency’s mammoth SLS (Space Launch System) rocket. EM-1 is a ‘proving ground’ mission that will fly an unmanned Orion thousands of kilometers beyond the Moon, further than any human capable vehicle, and back to Earth, over the course of a three-week mission.

OrionEM1_Auto18

Figure 39: The nose of the Super Guppy aircraft opened to reveal cargo hold carrying the Orion crew module pressure vessel after arrival at KSC (image credit: Ken Kremer)

• January 22, 2016: The first European hardware to arrive at NASA for Orion is the European Service Module structural test article (Figure 40). This test version of the service module has the same weight and configuration as the real thing and will undergo advanced testing at NASA’s Plum Brook Station in Ohio, USA. Once mating is complete the Service Module will have a mass of 13,000 kg in total. The Service Module will be placed on a shaker and vibrated to recreate the stress of launch. 47)

OrionEM1_Auto17

Figure 40: In this picture, the European Service Module structural test article is being ‘mated’ to the Crew Module Adapter, which connects the service module to the Orion Crew Module (image credit: ESA, NASA)

• January 2016: In a major step towards flight, engineers at NASA’s Michoud Assembly Facility in New Orleans have finished welding together the pressure vessel for the first Lunar Orion crew module that will blastoff in 2018 atop the agency’s SLS (Space Launch System) rocket. The 2018 launch of NASA’s Orion on an unpiloted flight dubbed Exploration Mission, or EM-1, counts as the first joint flight of SLS and Orion, and the first flight of a human rated spacecraft to deep space since the Apollo Moon landing era ended more than 4 decades ago. 48)

- The friction-stir welding work to assemble the primary structure of NASA’s maiden Lunar Orion capsule was just finished last week on Jan. 13. According to NASA, friction-stir welding produces incredibly strong bonds by transforming metals from a solid into a plastic-like state, and then using a rotating pin tool to soften, stir and forge a bond between two metal components to form a uniform welded joint, a vital requirement of next-generation space hardware.

OrionEM1_Auto16

Figure 41: Orion EM-1 pressure vessel was completed Jan. 13, 2016 at NASA’s Michoud Assembly Facility in New Orleans, LA. The pressure vessel is the spacecraft’s underlying structure on which all of the spacecraft’s systems and subsystems are built and integrated (image credit: NASA)

• Nov. 16, 2015: After the completion of Orion’s CDR (Critical Design Review) in October, the spacecraft is one important step closer toward the upcoming EM-1 (Exploration Mission-1, scheduled to take place in 2018. It means that Lockheed Martin, the prime contractor building Orion, can now focus on full-scale fabrication, assembly, integration and tests of the spacecraft. 49)

• Nov. 10, 2015: A test version of ESA’s service module for NASA’s Orion spacecraft arrived at the Cleveland Hopkins airport in Ohio, USA before continuing by road to NASA’s Plum Brook Station. 50) 51) 52)

- The module sits directly below Orion’s crew capsule and provides propulsion, power, thermal control, and water and air for four astronauts. The solar array spans 19 m and provides enough to power two households. A little over 5 m in diameter and 4 m high, it weighs 13.5 tons. The 8.6 tons of propellant will power one main engine and 32 smaller thrusters.

- Following initial tests in Europe, it will now undergo rigorous vibration tests in NASA’s Plum Brook Station in Ohio to ensure the structure and components can withstand the extreme stresses during launch.

• Nov. 6, 2015: Airbus Defence and Space is preparing to deliver the Orion ESM (European Service Module) structural test model to NASA. The model is an exact copy of the flight model, only without the functionality. It will determine whether the structural and weight specifications have been met, and whether the module lives up to NASA’s crew safety requirements. Testing will take place at NASA’s Plum Brook Station test center in Ohio, USA. 53)

- The design of the ESM is based on the ATV (Automated Transfer Vehicle), the European supply craft for the International Space Station. It is a cylindrical module with a diameter of 4.5 m and a total length – main engine excluded – of 2.7 m. It is fitted with four solar array ‘wings’ with a span of 18.8 m. Besides propulsion and power, the ESM is also equipped with oxygen tanks to supply the crew.

OrionEM1_Auto15

Figure 42: A look at the propulsion side of the Orion ESM (European Service Module) structural test model (image credit: Airbus Defence and Space SAS 2015)

• Oct. 26, 2015: Lockheed Martin and NASA have completed the majority of Orion’s CDR (Critical Design Review) which means the spacecraft’s design is mature enough to move into full-scale fabrication, assembly, integration and test of the vehicle. It also means that the program is on track to complete the spacecraft’s development to meet NASA’s Exploration Mission-1 (EM-1) performance requirements. The complete Orion EM-1 CDR process will conclude after the European Service Module CDR and a presentation to the NASA Agency Program Management Council in the spring 2016. 54) 55)

- Orion’s CDR kicked off in August 2015. The review focused on the EM-1 design as well as additional common elements that will be included on the Exploration Mission-2 (EM-2) spacecraft. These elements include the structure, pyrotechnics, LAS (Launch Abort System), software, guidance, navigation and control, and many others.

- Although the EM-1 vehicle is designed to accommodate all the necessary elements for human exploration of deep space, systems unique to the EM-2 mission, such as crew displays and the Environmental Control and Life Support System, will be evaluated at a later EM-2 CDR.

- In early 2016, Orion’s crew module pressure vessel will be shipped to the Operations and Checkout Facility at NASA’s Kennedy Space Center. There it will undergo final assembly, integration and testing in order to prepare for EM-1 when Orion is launched atop NASA’s SLS (Space Launch System) for the first time.

• Oct. 22, 2015: NASA completes the CDR (Critical design Review) for SLS (Space Launch System). The CDR examined the first of three configurations planned for the rocket, referred to as SLS Block 1. The Block I configuration will have a minimum 70-metric-ton (77-ton) lift capability and be powered by twin boosters and four RS-25 engines. The next planned upgrade of SLS, Block 1B, would use a more powerful exploration upper stage for more ambitious missions with a 105-metric-ton (115-ton) lift capacity. Block 2 will add a pair of advanced solid or liquid propellant boosters to provide a 130-metric-ton (143-ton) lift capacity. In each configuration, SLS will continue to use the same core stage and four RS-25 engines. 56)

• Oct. 12, 2015: Aerojet Rocketdyne announced that it passed the CDR (Critical Design Review) for the jettison motor and the crew module RCS (Reaction Control System) on the Orion spacecraft. These two major subsystems that Aerojet Rocketdyne is building for Lockheed Martin and NASA are critical for ensuring astronaut safety and mission success. Astronaut safety is paramount and the jettison motor and the crew module reaction control system will ensure that the crew begins their mission into deep space and lands at the completion without harm. 57)

- The jettison motor is a solid rocket motor that separates the launch abort system from the Orion spacecraft about five seconds after fairing separation, allowing the crew to continue safely on their way into deep space. In addition to its normal operations, the jettison motor serves a double duty if an anomaly occurs. Designed to assist crew escape, the jettison motor is one of three solid rocket motors on the launch abort system that will rapidly pull the capsule away from the stack in the event of an emergency.

- The RCS on the crew module the company is providing for Orion is equally important to crew safety. The crew module RCS provides the only course control authority after separation from the service module. It ensures that the heat shield is properly oriented, the crew module is stable under the parachutes and that the vehicle is in the correct orientation for splashdown.

• NASA is a small step closer to sending astronauts on a journey to Mars. On Sept. 5, 2015, engineers at the agency’s MAF (Michoud Assembly Facility) in New Orleans welded together the first two segments of the Orion crew module that will fly atop NASA’s SLS (Space Launch System) rocket on a mission beyond the far side of the moon. 58)

OrionEM1_Auto14

Figure 43: At NASA’s MAF in New Orleans, engineers welded together on Sept. 5, 2015 two sections of the Orion spacecraft’s primary structure that will fly on Exploration Mission-1, the first flight of Orion atop the agency’s Space Launch System rocket (image credit: NASA)

The primary structure of Orion’s crew module is made of seven large aluminum pieces that must be welded together in detailed fashion (Figure 44). The first weld connects the tunnel to the forward bulkhead, which is at the top of the spacecraft and houses many of Orion’s critical systems, such as the parachutes that deploy during reentry. Orion’s tunnel, with a docking hatch, will allow crews to move between the crew module and other spacecraft.

“Each of Orion’s systems and subsystems is assembled or integrated onto the primary structure, so starting to weld the underlying elements together is a critical first manufacturing step,” said Mark Geyer, Orion Program manager. “The team has done tremendous work to get to this point and to ensure we have a sound building block for the rest of Orion’s systems.”

Engineers have undertaken a meticulous process to prepare for welding. They have cleaned the segments, coated them with a protective chemical and primed them. They then outfitted each element with strain gages and wiring to monitor the metal during the fabrication process. Prior to beginning work on the pieces destined for space, technicians practiced their process, refined their techniques and ensured proper tooling configurations by welding together a pathfinder, a full-scale version of the current spacecraft design.

NASA’s prime contractor for the spacecraft, Lockheed Martin, is doing the production of the crew module at Michoud.

Through collaborations across design and manufacturing, the teams have been able to reduce the number of welds for the crew module by more than half since the first test version of Orion’s primary structure was constructed and flown on the EFT-1 (Exploration Flight Test-1) in December 2014. The EM-1 (Exploration Mission-1) structure will include just seven main welds, plus several smaller welds for start and stop holes left by welding tools. Fewer welds will result in a lighter spacecraft.

OrionEM1_Auto13

Figure 44: Seven welds of Orion's pressure vessel. This diagram shows the seven pieces of Orion’s primary structure and the order in which they are welded together (image credit: NASA)

The tunnel is the passageway astronauts crawl in and out of when Orion is docked with another vehicle. The forward bulkhead, located at the top of the crew module, must handle extreme loads during re-entry because that is where the parachutes are connected when they deploy. In order to certify the new welding process, the team at Michoud Assembly Facility welded a pathfinder vehicle to verify the design changes and welding changes would perform as expected. 59)

In early 2016, once the pieces that make up the crew module’s pressure vessel are welded together, it will be shipped to the Operations and Checkout Facility at NASA’s Kennedy Space Center. There it will undergo final assembly, integration and testing in order to prepare for Exploration Mission-1 when Orion is launched atop NASA’s SLS (Space Launch System) for the first time. The test flight will send Orion into lunar distant retrograde orbit—a wide orbit around the moon that is farther from Earth than any human-rated spacecraft has ever traveled. The mission will last more than 20 days and will certify the design and safety of Orion and SLS for human-rated exploration missions.


Launch: Orion EM-1 will launch uncrewed on the maiden test flight of NASA’s SLS (Space Launch System). Liftoff is expected in 2020.The SLS-1/EM-1 test flight with the uncrewed Orion spacecraft will launch from Launch Complex 39-B at the Kennedy Space Center, Cape Canaveral, FL. 60) 61) 62)

The EM-1 mission will last more than three weeks, sending the Orion spacecraft into a high-altitude retrograde orbit around the moon before heading back to Earth for a splashdown in the Pacific Ocean.

• March 8, 2018: Exploration Mission-1 (EM-1) will be the first integrated test of NASA’s deep space exploration systems: the Orion spacecraft, Space Launch System (SLS) rocket and the ground systems at Kennedy Space Center in Cape Canaveral, Florida. The first in a series of increasingly complex missions, EM-1 will be an uncrewed flight test that will provide a foundation for human deep space exploration, and demonstrate our commitment and capability to extend human existence to the Moon and beyond. 63)

- During this flight, the spacecraft will launch on the most powerful rocket in the world and fly farther than any spacecraft built for humans has ever flown. It will travel 280,000 miles from Earth, thousands of miles beyond the Moon over the course of about a three-week mission. Orion will stay in space longer than any ship for astronauts has done without docking to a space station and return home faster and hotter than ever before.

- “This is a mission that truly will do what hasn’t been done and learn what isn’t known,” said Mike Sarafin, EM-1 mission manager at NASA Headquarters in Washington. “It will blaze a trail that people will follow on the next Orion flight, pushing the edges of the envelope to prepare for that mission.”

- Leaving Earth: SLS and Orion will blast off from Launch Complex 39B at NASA’s modernized spaceport at Kennedy Space Center in Florida. The SLS rocket is designed for missions beyond low-Earth orbit carrying crew or cargo to the Moon and beyond, and will produce 8.8 million pounds of thrust during liftoff and ascent to loft a vehicle weighing nearly six million pounds to orbit. Propelled by a pair of five segment boosters and four RS-25 engines, the rocket will reach the period of greatest atmospheric force within ninety seconds. After jettisoning the boosters, service module panels, and launch abort system, the core stage engines will shut down and the core stage will separate from the spacecraft.

- As the spacecraft makes an orbit of Earth, it will deploy its solar arrays and the ICPS (Interim Cryogenic Propulsion Stage) will give Orion the big push needed to leave Earth’s orbit and travel toward the Moon. From there, Orion will separate from the ICPS within about two hours after launch. The ICPS will then deploy a number of small satellites, known as CubeSats, to perform several experiments and technology demonstrations.

- On to the Moon: As Orion continues on its path from Earth orbit to the Moon, it will be propelled by a service module provided by the European Space Agency, which will supply the spacecraft’s main propulsion system and power (as well as house air and water for astronauts on future missions). Orion will pass through the Van Allen radiation belts, fly past the Global Positioning System (GPS) satellite constellation and above communication satellites in Earth orbit. To talk with mission control in Houston, Orion will switch from NASA’s Tracking and Data Relay Satellites system and communicate through the Deep Space Network. From here, Orion will continue to demonstrate its unique design to navigate, communicate, and operate in a deep space environment.

- The outbound trip to the Moon will take several days, during which time engineers will evaluate the spacecraft’s systems and, as needed, correct its trajectory. Orion will fly about 62 miles (100 km) above the surface of the Moon, and then use the Moon’s gravitational force to propel Orion into a new deep retrograde, or opposite, orbit about 70,000 km from the Moon.

- The spacecraft will stay in that orbit for approximately six days to collect data and allow mission controllers to assess the performance of the spacecraft. During this period, Orion will travel in a direction around the Moon retrograde from the direction the Moon travels around Earth.

- Return and Reentry: For its return trip to Earth, Orion will do another close flyby that takes the spacecraft within about 60 miles of the Moon’s surface, the spacecraft will use another precisely timed engine firing of the European-provided service module in conjunction with the Moon’s gravity to accelerate back toward Earth. This maneuver will set the spacecraft on its trajectory back toward Earth to enter our planet’s atmosphere traveling at 25,000 mph (11 kilometers per second), producing temperatures of approximately 5,000 degrees Fahrenheit (2,760 degrees Celsius) – faster and hotter than Orion experienced during its 2014 flight test.

- After about three weeks and a total distance traveled exceeding 1.3 million miles, the mission will end with a test of Orion’s capability to return safely to the Earth as the spacecraft makes a precision landing within eyesight of the recovery ship off the coast of Baja, California. Following splashdown, Orion will remain powered for a period of time as divers from the U.S. Navy and operations teams from NASA’s Exploration Ground Systems approach in small boats from the waiting recovery ship. The divers will briefly inspect the spacecraft for hazards and hook up tending and tow lines, and then engineers will tow the capsule into the well-deck of the recovery ship to bring the spacecraft home.

- Future Missions: With this first exploration mission, NASA is leading the next steps of human exploration into deep space where astronauts will build and begin testing the systems near the Moon needed for lunar surface missions and exploration to other destinations farther from Earth, including Mars. The SLS rocket will evolve from an initial configuration capable of sending more than 26 metric tons to the Moon, to a final configuration that can send at least 45 metric tons. The second flight will take crew on a different trajectory using a powerful exploration upper stage and test Orion’s critical systems with humans aboard. Together, Orion, SLS and the ground systems at Kennedy will be able to meet the most challenging crew and cargo mission needs in deep space.

- Future exploration missions with crew aboard Orion will dock with a Lunar Orbital Platform-Gateway. NASA and its partners will use the gateway for deep-space operations including missions to and on the Moon with decreasing reliance on the Earth. Using lunar orbit, we will gain the experience necessary to extend human exploration farther into the solar system than ever before.

OrionEM1_Auto12

Figure 45: The Orion EM-1 mission map (image credit: NASA) 64)




SLS (Space Launch System):

The SLS is the new heavy launch system for NASA. The SLS configuration for EM-1 is considered Block 1, the first configuration of the SLS evolution plan. The Shuttle-derived design takes advantage of resources established for the Space Shuttle, including the workforce, tooling, manufacturing processes, supply chain, transportation logistics, launch infrastructure, and LOX/LH2 propellant infrastructure. An overview of the initial SLS Block 1 configuration that will first fly with the Orion in 2018 is shown in Figure 46. The SLS enables many aspects of the NASA core capabilities in addition to human exploration initiatives. These include the reduction in mission duration, increased mass margins, reductions in total spacecraft complexity, and significant increases in payload volume (Ref. 77).

The secondary payload initiative for EM-1 takes advantage of several of these capabilities and enables new opportunities for small spacecraft developers. By utilizing planned unoccupied volume within the upper stage adapter ring, the OSA (Orion Stage Adapter), increased mission science and technology missions can be accommodated.

SLS Block 1 is capable of deploying 70 metric tons of payload into LEO (Low Earth Orbit). The characteristic energy (C3) curve for SLS is provided in Figure 2, illustrating SLS’s evolved thrust capabilities.

OrionEM1_Auto11

Figure 46: SLS Block 1 70t Initial Configuration (image credit: NASA)

OrionEM1_Auto10

Figure 47: Welding is complete on the largest piece of the core stage that will provide the fuel for the first flight of NASA's new rocket, the Space Launch System, with the Orion spacecraft in 2018. The core stage liquid hydrogen tank has completed welding on the Vertical Assembly Center at NASA's Michoud Assembly Facility in New Orleans. Standing more than 40 m tall and 8.4 m in diameter, the liquid hydrogen tank is the largest cryogenic fuel tank for a rocket in the world. The liquid hydrogen tank and liquid oxygen tank are part of the core stage — the "backbone" of the SLS rocket that will stand at more than 61 m tall. Together, the tanks will hold 733,000 gallons (2775 m3) of propellant and feed the vehicle's four RS-25 engines to produce a total of 2 million pounds of thrust (8896 kN) This is the second major piece of core stage flight hardware to finish full welding on the Vertical Assembly Center. The core stage flight engine section completed welding in April 2016. More than 1.7 miles of welds have been completed for core stage hardware at Michoud. Traveling to deep space requires a large rocket that can carry huge payloads, and SLS will have the payload capacity needed to carry crew and cargo for future exploration missions, including NASA's Journey to Mars. 65)

OrionEM1_AutoF

Figure 48: David Osborne, an Aerie Aerospace LLC machinist at NASA's Marshall Space Flight Center in Huntsville, Alabama, takes measurements prior to the start of precision machining of the Orion stage adapter for NASA's new rocket, the SLS (Space Launch System). The adapter will connect the Orion spacecraft to the ICPS (Interim Cryogenic Propulsion Stage) for the first flight of SLS with Orion in late 2018. The ICPS is the liquid oxygen/liquid hydrogen-based system that will give Orion the big, in-space push needed to fly beyond the moon before it returns to Earth. The adapter also will carry 13 CubeSats that will perform science and technology investigations that will help pave the way for future human exploration in deep space, including the Journey to Mars (image credit: NASA, Sept. 29, 2016)

OrionEM1_AutoE

Figure 49: SLS Net-Payload System Mass-Earth Escape (image credit: NASA)

OrionEM1_AutoD

Figure 50: Artist rendering of the various configurations of NASA's SLS together with a quick comparison with the Saturn V (1967-1972), image credit: NASA




Status of SLS development:

• August 2018: Upper Stage and Adapters: At the forward section of the rocket, just below the Orion crew vehicle, is the OSA (Orion Stage Adapter), which holds the secondary payload accommodations. For EM-1, the OSA is complete and was delivered to EGS in February 2018. Made of a lightweight aluminum alloy, the OSA measures 5.4 m in diameter by 1.5 m high. A diaphragm just below the mounting brackets prevents launch gases from entering the Orion spacecraft. 66)

- Sitting just below the OSA, the ICPS (Interim Cryogenic Propulsion Stage), a modified Delta Cryogenic Second Stage manufactured by ULA in Decatur, Ala. through a contract with Boeing, supplies in-space propulsion for the Block 1 vehicle. The ICPS will provide the TLI burn to send Orion toward the moon during the EM-1 mission. After entering its disposal trajectory with the OSA attached, the ICPS will release the first seven CubeSats (Figure 62).

OrionEM1_AutoC

Figure 51: Photo of the ICPS, which will provide in-space propulsion for the first integrated flight of SLS and Orion, is complete (image credit: NASA)

• August 14, 2018: NASA Administrator Jim Bridenstine made his first official visit to NASA’s rocket factory, the Michoud Assembly Facility in New Orleans, Louisiana, on Aug. 13, for tours and briefings on progress building the Space Launch System rocket and Orion spacecraft. 67)

OrionEM1_AutoB

Figure 52: NASA Administrator Jim Bridenstine speaks with members of the media in front of the massive liquid hydrogen tank, which comprises almost two-thirds of the core stage and holds 537,000 gallons (2032 cm3) of liquid hydrogen cooled to minus 423º Fahrenheit (-252ºC). Innovative processes are part of core stage manufacturing including joining the thickest pieces of aluminum ever with self-reacting friction stir welding. The liquid oxygen tank and liquid hydrogen tanks have the thickest joints ever made with self-reacting friction stir welding (image credit: NASA, Jude Guidry)

- Bridenstine, joined by Jody Singer, acting director of NASA's Marshall Space Flight Center and Keith Hefner, director of Michoud, toured the massive facility where manufacturing and assembly of the largest and most complex parts of SLS and Orion are underway. SLS will send the Orion spacecraft, astronauts and critical hardware on bold exploration missions to the Moon and beyond.

- The tour highlighted the SLS core stage which, flanked by two solid rocket boosters, will provide the thrust to propel the vehicle to deep space. The administrator had the opportunity to view SLS hardware just as engineers are putting the finishing touches on the core stage parts by testing avionics, installing special equipment inside the structures and applying thermal protection systems.

- Bridenstine also viewed Orion's latest milestone, the welding completion of the primary structure of the crew module, or pressure vessel, by engineers at Michoud. The pressure vessel is the primary structure that holds the pressurized atmosphere astronauts will breathe to allow them to work in the harsh environment of deep space. This pressure vessel will carry the first astronauts to missions beyond the Moon on Exploration Mission-2.

- "This is a critical piece of America's architecture for our return to the Moon and ultimately, it's a strategic capability for the United States of America," said Bridenstine. "I cannot overstate how important this capability is to America and how all of the team members who work here are contributing to a capability where countries around the world are seeking to partner with the United States as we return to the surface of the Moon and into orbit around the Moon."

• July 31, 2018: The first major piece of core stage hardware for NASA's SLS (Space Launch System) rocket has been assembled and is ready to be joined with other hardware for Exploration Mission-1. The forward skirt will connect the upper part of the rocket to the core stage and house many of the flight computers, or avionics. 68)

OrionEM1_AutoA

Figure 53: The first major piece of core stage hardware for NASA's Space Launch System rocket has been assembled and is ready to be joined with other hardware for Exploration Mission-1. The forward skirt will connect the upper part of the rocket to the core stage and house many of the flight computers, or avionics (image credit: NASA, Eric Bordelon)

- The backbone of the world's most powerful rocket, the 212-foot-tall (64.6 m) core stage, will contain the SLS rocket's four RS-25 rocket engines, propellant tanks, flight computers and much more. Though the smallest part of the core stage, the forward skirt will serve two critical roles. It will connect the upper part of the rocket to the core stage and house many of the flight computers, or avionics.

- "Completion of the core stage forward skirt is a major step in NASA's progress to the launch pad," said Deborah Bagdigian, lead manager for the forward skirt at the agency's Marshall Space Flight Center in Huntsville, Alabama. "We're putting into practice the steps and processes needed to assemble the largest rocket stage ever built. With the forward skirt, we are improving and refining how we'll conduct final assembly of the rest of the rocket."

- On July 24, the forward skirt assembly was wrapped up with the installation of all its parts. As part of forward skirt testing, the flight computers came to life for the first time as NASA engineers tested critical avionic systems that will control the rocket’s flight. The construction, assembly and avionics testing occurred at NASA's Michoud Assembly Facility in New Orleans.

- Located throughout the core stage, the avionics are the rocket's "brains," controlling navigation and communication during launch and flight. It is critical that each of the avionics units is installed correctly, work as expected and communicate with each other and other components, including the Orion spacecraft and ground support systems.

- "It was amazing to see the computers come to life for the first time" said Lisa Espy, lead test engineer for SLS core stage avionics. "These are the computers that will control the rocket as it soars off the pad for Exploration Mission-1."

- The forward skirt test series was the first of many that will verify the rocket's avionics will work as expected during launch. The tests show the forward skirt was built correctly, and that all components and wiring on the inside have been put together and connected properly and are sending data over the lines as expected.

- The avionic computers ran "built-in tests" that Espy compares to the internal diagnostic tests performed by an automobile when first started. All of the health and data status reports came back as expected. The tests were a success and did not return any error codes. Such error codes would be similar to a check engine light on a car.

- The successful tests give the team the confidence needed to move forward with avionics installations in the core stage intertank and engine section. With more hardware and more interfaces, the installation in the intertank will be more complex, and the complexity will ramp up even more as the team moves to the engine section, introducing hydraulics and other hardware needed for the rocket's engines.

- Engineers will perform standalone tests on each component as they are completed. Once the forward and aft joins are integrated, they will perform a final integrated function test, testing all the core stage's avionics together.

- The fully integrated core stage and its four RS-25 engines will then be fired up during a final test before launch. At NASA's Kennedy Space Center in Florida, the core stage will be stacked with the upper part of the rocket, including Orion, and joined to the rocket's twin solid rocket boosters, in preparation for EM-1.

• July 10, 2018: Aerojet Rocketdyne recently passed a key milestone in preparation for the Ascent Abort Test (AA-2) next year with the successful casting of the Jettison Motor for the Lockheed Martin-built Orion spacecraft's LAS (Launch Abort System). AA-2 is a full-stress test of NASA's Orion LAS, which includes the Jettison Motor built by Aerojet Rocketdyne. The Orion Jettison Motor is used to separate the LAS from Orion as it makes its way to space and is the only motor on the escape system to activate in all mission scenarios. 69)

OrionEM1_Auto9

Figure 54: The Jettison Motor built by Aerojet Rocketdyne for the Lockheed Martin-built Orion spacecraft's LAS (Launch Abort System) that will be tested during the Ascent Abort Test (AA-2) next year (image credit: Aerojet Rocketdyne)

- In the unlikely event of an emergency on the launch pad or during ascent, the LAS would activate within milliseconds to whisk Orion and its astronaut crew to safety. Once Orion reaches a safe distance from the rocket, the Orion Jettison Motor would ignite to separate the LAS structure from the spacecraft, which could then deploy its parachutes for a safe landing.

- During the AA-2 test, a solid rocket booster will launch a fully functional LAS and an Orion test vehicle to an altitude of 31,000 feet (~9.5 km) at Mach 1.3 (over 1,000 mph) to test out the functionality of the LAS system prior to flying humans. The Jettison Motor will fire last in the test sequence.

- "Every time our engineers work on products supporting the Orion spacecraft or the Space Launch System rocket, they have astronaut safety front and center of mind," said Aerojet Rocketdyne CEO and President Eileen Drake. "The AA-2 test is a critical step to testing the Launch Abort System and our Jettison Motor and ensuring our astronauts always return home safely to their families."

- The Orion Jettison Motor, which generates 40,000 pounds of thrust (177.928 kN), uses a propellant that is poured into a motor casing, where it cures over a period of several days to form a solid, stable cast that burns in a precisely controlled fashion.

- The AA-2 Jettison Motor casting took place at Aerojet Rocketdyne's motor production facility in Sacramento, California. The completed motor will now be shipped to NASA's Kennedy Space Center for integration with the LAS by Lockheed Martin.

• April 3, 2018: NASA's Super Guppy aircraft prepares to depart the U.S. Army’s Redstone Airfield in Huntsville, Alabama, April 3, with flight hardware for NASA’s Space Launch System – the agency’s new, deep-space rocket that will enable astronauts to begin their journey to explore destinations far into the solar system. The Orion stage adapter, the top of the rocket that connects SLS to Orion is loaded into the Guppy, which will deliver it to NASA’s Kennedy Space Center in Florida for flight preparations. On Exploration Mission-1, the first integrated flight of SLS and the Orion spacecraft, the adapter will carry 13 CubeSats as secondary payloads. SLS will send Orion beyond the Moon, about 280,000 miles from Earth. This is farther from Earth than any spacecraft built for humans has ever traveled. 70)

OrionEM1_Auto8

Figure 55: SLS flight hardware is being transported in a Super Guppy from Huntsville AL to KSC (Kennedy Space Center) in Florida (image credit: NASA/MSFC, Fred Deaton)

• December 22, 2017: The booster avionics system for the SLS (Space Launch System) rocket completed system-level qualification testing in October 2017. Engineers simulated the booster avionics operations in a systems integration lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, where all the avionics boxes and electronics were tested. The tests verified the fidelity of the system. Two five-segment rocket boosters, developed by Orbital ATK, will provide 80 percent of the thrust for the first two minutes of flight. The booster avionics, receiving commands from the SLS flight computers in the core stage, provide 80 percent of the control authority for the rocket during the first two minutes of flight. Key interactions confirmed during qualification testing included the ability to initiate booster ignition, control the booster during flight, terminate flight, and triggering core stage separation. 71)

• December 15, 2017: When NASA’s Orion spacecraft hurtles toward Earth’s surface during its return from deep-space missions, the capsule’s system of 11 parachutes will assemble itself in the air and slow the spacecraft from 300 mph to a relatively gentle 20 mph for splashdown in the Pacific Ocean in the span of about 10 minutes. As the astronauts inside descend toward the water on future missions, their lives will be hanging by a series of threads that have been thoroughly ruggedized, tested and validated to ensure the parachute-assisted end of Orion missions are a success. 72)

- Through a series of tests in the Arizona desert, the engineers refining Orion’s parachutes have made the road to certifying them for flights with astronauts look easy, including a successful qualification test Dec. 13 that evaluated a failure case in which only two of the systems three orange and white main parachutes deploy after several other parachutes in the system used to slow and stabilize Orion endure high aerodynamic stresses. But behind the scenes, engineers are working hard to understand and perfect the system that must be able to work across a broad range of potential environmental conditions and bring the crew home.

- While Orion’s parachutes may look similar to those used during the Apollo-era to the untrained eye, engineers can’t simply take that parachute system and scale it up to accommodate Orion’s much larger size. Through testing and analysis, technicians have developed Orion’s parachutes to be lighter, better understood and more capable than Apollo’s. NASA has also been able to adjust the system as elements of the spacecraft, such as attachment points, have matured.

- “Through our testing, we’ve addressed some known failures that can happen in complex parachute systems to make the system more reliable,” said Koki Machin, chief engineer for the system. “We built upon the strong foundation laid by Apollo engineers and figured out how to manage the stresses on the system during deployment more efficiently, decrease the mass of the parachutes by using high tech fabric materials rather than metal cables for the risers that attach the parachute to the spacecraft, and improve how we pack the parachute into Orion so they deploy more reliably.”

- Orion’s parachute system is also incredibly complex. About 10 miles of Kevlar lines attach the spacecraft to the outer rim of nearly 12,000 square feet (~1110 m2) of parachute canopy material – over four times the average square footage of a house – and must not get tangled during deployment. In addition to the fabric parachutes themselves, there are cannon-like mortars that fire to release different parachutes. Embedded in several parachutes are fuses set to burn at specific times that ignite charges to push blades through bullet proof materials at precise moments, slowly unfurling the parachutes to continue the sequential phases of the deployment sequence. All of these elements must be developed to be reliable for the various angles, wind conditions and speeds in which Orion could land.

- With the analysis capabilities that exist today and the historical data available, engineers have determined that approximately 20-25 tests, rather than the more than 100 performed during the Apollo era, will give them enough opportunities to find areas of weakness in Orion’s parachute system and fix them. After the three remaining final tests next year, the system will be qualified for missions with astronauts.

- “There are things we can model with computers and those we can’t. We have to verify the latter through repeated system tests by dropping a test article out of a military aircraft from miles in altitude and pushing the parachutes to their various limits,” said CJ Johnson, project manager for the parachute system. “Lots of subtle changes can affect parachute performance and the testing we do helps us account for the broad range of possible environments the parachutes will have to operate in.”

- Orion parachute engineers have also provided data and insight from the tests to NASA’s Commercial Crew Program partners. NASA has matured computer modeling of how the system works in various scenarios and helped partner companies understand certain elements of parachute systems, such as seams and joints, for example. In some cases, NASA’s work has provided enough information for the partners to reduce the need for some developmental parachute tests.

- “Orion’s parachute system is an extremely lightweight, delicate collection of pieces that absolutely must act together simultaneously or it will fail,” said Machin. “It alone, among all the equipment on the crew module, must assemble itself in mid-air at a variety of possible velocities and orientations.”

OrionEM1_Auto7

Figure 56: NASA is testing Orion’s parachutes to qualify the system for missions with astronauts (image credits: U.S. Army)

• November 8, 2017: NASA is providing an update on the first integrated launch of the Space Launch System (SLS) rocket and Orion spacecraft after completing a comprehensive review of the launch schedule. This uncrewed mission, known as Exploration Mission-1 (EM-1) is a critical flight test for the agency’s human deep space exploration goals. EM-1 lays the foundation for the first crewed flight of SLS and Orion, as well as a regular cadence of missions thereafter near the Moon and beyond. 73)

- The review follows an earlier assessment where NASA evaluated the cost, risk and technical factors of adding crew to the mission, but ultimately affirmed the original plan to fly EM-1 uncrewed. NASA initiated this review as a result of the crew study and challenges related to building the core stage of the world’s most powerful rocket for the first time, issues with manufacturing and supplying Orion’s first European service module, and tornado damage at the agency’s Michoud Assembly Facility in New Orleans.

- “While the review of the possible manufacturing and production schedule risks indicate a launch date of June 2020, the agency is managing to December 2019,” said acting NASA Administrator Robert Lightfoot. “Since several of the key risks identified have not been actually realized, we are able to put in place mitigation strategies for those risks to protect the December 2019 date.”

- The majority of work on NASA’s new deep space exploration systems is on track. The agency is using lessons learned from first time builds to drive efficiencies into overall production and operations planning. To address schedule risks identified in the review, NASA established new production performance milestones for the SLS core stage to increase confidence for future hardware builds. NASA and its contractors are supporting ESA’s (European Space Agency) efforts to optimize build plans for schedule flexibility if sub-contractor deliveries for the service module are late.

- NASA’s ability to meet its agency baseline commitments to EM-1 cost, which includes SLS and ground systems, currently remains within original targets. The costs for EM-1 up to a possible June 2020 launch date remain within the 15 percent limit for SLS and are slightly above for ground systems. NASA’s cost commitment for Orion is through Exploration Mission-2. With NASA’s multi-mission approach to deep space exploration, the agency has hardware in production for the first and second missions, and is gearing up for the third flight. When teams complete hardware for one flight, they’re moving on to the next.

- As part of the review, NASA now plans to accelerate a test of Orion’s launch abort system ahead of EM-1, and is targeting April 2019. Known as Ascent-Abort 2, the test will validate the launch abort system’s ability to get crew to safety if needed during ascent. Moving up the test date ahead of EM-1 will reduce risk for the first flight with crew, which remains on track for 2023.

• November 8, 2017: Lift off at the end of the countdown is just the first phase in a launch. Two minutes in, booster separation occurs ­– a critical stage in flight, with little room for error. Engineers at NASA’s Langley Research Center in Hampton, Virginia, are doing their part to support NASA’s new deep space rocket, the SLS (Space Launch System). The rocket will be capable of sending the Orion crew vehicle and other large cargos on bold new missions beyond Earth orbit. To understand the aerodynamic forces as booster separation motors fire and push the solid rocket boosters away from the rocket’s core, Langley engineers are testing a 35-inch SLS model in Block 1B 105-metric ton evolved configuration in the Unitary Plan Wind Tunnel using a distinct pink paint. The pressure-sensitive paint works by reacting with oxygen to fluoresce at differing intensities, which is captured by cameras in the wind tunnel. Researchers use that data to determine the airflow over the model and which areas are seeing the highest pressure. 74)

OrionEM1_Auto6

Figure 57: Wind tunnel test of the SLS booster separation model in Block 1B (image credit: NASA/LaRC)

• October 19, 2017: NASA engineers conducted a full-duration, 500-second test of RS-25 flight engine E2063 on the A-1 Test Stand at SSC (Stennis Space Center) on Oct. 19, 2017. Once certified, the engine is scheduled to help power NASA’s new Space Launch System rocket on its EM-2 (Exploration Mission-2). The test was part of Founders Day Open House activities at Stennis. 75)

- Engine E2063 is scheduled for use on NASA’s second mission of SLS and Orion, known as EM-2. The first integrated flight test of SLS and Orion, EM-1 (Exploration Mission-1), will be an uncrewed final test of the rocket and its systems. The EM-2 flight will be the first to carry astronauts aboard the Orion spacecraft, marking the return of humans to deep space for the first time in more than 40 years.

• September 22, 2017: Following a series of issues over the last year with the Core Stage for the first flight of the Space Launch System rocket, the launch dates for both the EM-1 and EM-2 flights are beginning to align, with EM-1 now targeting 'No Earlier Than' 15 December 2019 and EM-2 following on 1 June 2022. Additionally, the EM-3 flight has gained its first notional mission outline, detailing a flight to Near-Rectilinear Halo Orbit to deploy the Hab (Habitat) module for the new Deep Space Gateway. 76)

- The first flight of any new rocket is bound to encounter design and initial production delays. And NASA’s SLS (Space Launch System ) rocket is been no stranger to those sort of anticipated effects. - Following a misalignment in the installation of the main welding machine at the Michoud Assembly Facility (MAF), welding for the certification elements for the new SLS core stage Liquid Hydrogen (LH2) and Liquid Oxygen (LOX) tanks picked up.

- After the initial LH2 qualification tanks were welded, a change to the welding machine’s pin was made – a change that resulted in segment welds on the EM-1 LH2 flight tank being too brittle to meet flight specification requirements.

- This pin change and subsequent issue led to the understanding that the LH2 flight tank for EM-1 was no longer flight worthy and thus could not be used for EM-1.

- A plan was then put in place to restore the welding machine’s previously used pin – the one that welded all the Core Stage test articles that have thus far passed all qualification and acceptance testing – and use the upcoming weld for the EM-2 flight LH2 tank as the new LH2 tank for the EM-1 flight.

- However, less than a week after the EM-1 LH2 flight tank issue became known, a worker at MAF damaged the aft dome section of the qualification article for the Core Stage LOX tank.

- In all, these production issues quickly made the Core Stage’s timeline for EM-1’s then-2018 launch date impossible.

- Earlier this year, NASA acknowledged this and announced that EM-1 was slipping to sometime in 2019 – though that was already understood to be “Q4 2019.”




Payload Accommodations on EM-1:

Secondary payloads on EM-1 will be launched in the OSA (Orion Stage Adapter). Payload dispensers will be mounted on specially designed brackets, each attached to the interior wall of the OSA as shown in Figure 58. For the EM-1 mission, a total of fourteen brackets will be installed, allowing for thirteen payload locations. The final location will be used for mounting an avionics unit, which will include a battery and sequencer for executing the mission deployment sequence. 77)

OrionEM1_Auto5

Figure 58: The Orion Stage Adapter with payload locations (image credit: NASA)

Each bracket is designed to hold the volume equivalent of 6U and 12U dispensers. The current design baseline for the EM-1mission is for payloads to be compatible with 6U class dispensers. Payloads in 6U class will be limited to 14 kg maximum mass. Detailed physical accommodations are documented in Table 6 and Figure 59.

The avionics unit will interface with each deployer through cables mounted in the OSA. Payloads will remain powered off until the sequencer transmits the deployment signal to each dispenser, and the payload is released. Payloads will exit the dispenser at an approximate rate of 1.2 m/s, with deployments separated by a minimum of 5 seconds. No other payload services are currently planned for EM-1.

Deployer

A

B

C

6U configuration

239.4 mm

366 mm

116 mm

12 U configuration

239.4 mm

366 mm

229 mm

Table 6: Payload maximum dimensions

OrionEM1_Auto4

Figure 59: Payload volume dimension (image credit: NASA)


GSDO (Ground Systems Development and Operations) : The GSDO program at the KSC (Kennedy Space Center) will perform SLS ground processing. Payloads will be fully integrated into their dispenser at the time of delivery to GSDO. Once delivered, integrated payloads will be installed into the OSA, prior to stacking operations with the Orion system. Prior to roll-out to the pad, battery charging for the avionics unit and each payload containing approved batteries will occur at the VAB (Vehicle Assembly Building).


Operations: Secondary payloads on SLS will remain powered off during the ascent phase of the launch vehicle, through separation of the Orion spacecraft. Once separation is confirmed, the ICPS will send a discrete signal to the SPDS avionics to activate. The schedule for deployments will be loaded as a skit prior to vehicle stacking. No real-time commanding or telemetry is available; therefore payloads will be deployed automatically through the pre-determined mission timeline sequence.

Payloads will have opportunity to deploy beginning after the ICPS disposal sequence is complete (approximately T+4 hours) up to 10 days from launch. All deployments will be completed before avionics batteries are expended. Figure 60 provides an overview of the mission profile.

Once deployed, payloads will be required to wait 15 seconds before deploying antennas, solar panels, sails, etc. to ensure adequate clearance from ICPS. Payload communications following deployment will be the responsibility of the payload project, with no resources being provided by SLS.

OrionEM1_Auto3

Figure 60: EM-1 mission profile (NASA)




Secondary payloads of Orion/EM-1

The first flight of NASA’s new rocket, SLS ( Space Launch System), will carry 13 CubeSats/Nanosatellites to test innovative ideas along with an uncrewed Orion spacecraft in 2019. These small satellite secondary payloads will carry science and technology investigations to help pave the way for future human exploration in deep space, including the journey to Mars. SLS’ first flight, referred to as EM-1 (Exploration Mission-1 ), provides the rare opportunity for these small experiments to reach deep space destinations, as most launch opportunities for CubeSats are limited to low-Earth orbit. 78) 79)

The secondary payloads, 13 CubeSats, were selected through a series of announcements of flight opportunities, a NASA challenge and negotiations with NASA’s international partners.

NASA selected two payloads through the NextSTEP (Next Space Technologies for Exploration Partnerships) Broad Agency Announcement of May 5, 2015:

LunIR ⟨originally called Skyfire) - Lockheed Martin Space Systems Company, Denver, Colorado, will develop a 6U CubeSat to perform a lunar flyby of the moon, taking sensor data during the flyby to enhance our knowledge of the lunar surface. LunIR will test a new technology mid-wave infrared camera and micro-cryocooler. LunIR also includes a visible imager.

Lunar IceCube - Morehead State University, Kentucky, will build a 6U CubeSat to search for water ice and other resources at a low orbit of only 62 miles above the surface of the moon. This CubeSat will orbit the Moon and prospect for water and other volatiles in lunar regolith using BIRCHES (Broadband Infrared Compact High-Resolution Exploration Spectrometer) developed at NASA/GSFC.

Three payloads were selected by NASA’s Human Exploration and Operations Mission Directorate:

NEA Scout (Near-Earth Asteroid Scout), the 6U CubeSat of NASA/MSFC/JPL will perform reconnaissance of an asteroid, take pictures and observe its position in space

BioSentinel - a 6U CubeSat of NASA/ARC will use yeast to detect, measure and compare the impact of deep space radiation on living organisms over long durations in deep space.

Lunar Flashlight - a 6U CubeSat of NASA/JPL/MSFC will look for ice deposits and identify locations where resources may be extracted from the lunar surface

Two payloads were selected by NASA’s Science Mission Directorate:

CuSP – a 6U CubeSat of the SwRI (Southwest Research Institute) “space weather station” to measure particles and magnetic fields in space, testing the practicality for a network of stations to monitor space weather

LunaH-Map a 6U CubeSat of Arizona State University will map hydrogen within craters and other permanently shadowed regions throughout the moon’s south pole

Three additional payloads were determined through NASA’s Cube Quest Challenge – sponsored by NASA’s Space Technology Mission Directorate and designed to foster innovations in small spacecraft propulsion and communications techniques. CubeSat builders will vie for a launch opportunity on SLS’ first flight through a competition that has four rounds, referred to as ground tournaments, leading to the selection in 2017 of the payloads to fly on the mission.

Cislunar Explorers, Cornell University, Ithaca, New York. Cislunar Explorers’ concept consists of a pair of spacecraft on a mission to orbit the moon. These two spacecraft are mated together as a 6U CubeSat. After deployment from the launch vehicle, they will split apart and each give their initial rotation in the process of decoupling.

CU-E3(CU Earth Escape Explorer), a 6U CubeSat of the University of Colorado in Boulder, CO. The CU-E3 mission will use a lunar gravity assist maneuver to place the CubeSat in a heliocentric orbit that trails the Earth at a distance > 1AU (Astronomical Unit). The distance between the Earth and the spacecraft will gradually increase over time, reaching 27 million km by the end of its one-year mission.

Team Miles, Team Miles is led by the company Fluid and Reason LLC. Team Miles is a group of citizen scientists and engineers that initially came together through Tampa Hackerspace in Florida – all participants in the community, nonprofit workshop. Team Miles is a 6U CubeSat to demonstrate navigation in deep space using innovative plasma thrusters. Use of a software defined S-band radio to communicate with Earth.

NASA has also reserved three slots for payloads from international partners. These are:

EQUULEUS (EQUilibriUm Lunar-Earth point 6U Spacecraft) of ISSL (Intelligent Space Systems Laboratory) of the University of Tokyo and JAXA. EQUULEUS will help scientists understand the radiation environment in the region of space around Earth by imaging Earth’s plasmasphere and measuring the distribution of plasma that surrounds the planet. This opportunity may provide important insight for protecting both humans and electronics from radiation damage during long space journeys. It will also demonstrate low-energy trajectory control techniques, such as multiple lunar flybys, within the Earth-Moon region.

OMOTENASHI (Outstanding MOon exploration TEchnologies demonstrated by NAno Semi-Hard Impactor) of JAXA. JAXA will use the OMOTENASHI to demonstrate the technology for low-cost and very small spacecraft to explore the lunar surface. This technology could open up new possibilities for future missions to inexpensively investigate the surface of the moon. The CubeSat will also take measurements of the radiation environment near the moon as well as on the lunar surface.

ArgoMoon. The Italian company Argotec is building the ArgoMoon CubeSat under the Italian Space Agency (ASI) internal review and approval process. ArgoMoon will demonstrate the ability to perform operations in close proximity of the ICPS ( Interim Cryogenic Propulsion Stage), which will send Orion onto its lunar trajectory. It should also record images of the ICPS for historical documentation and to provide valuable mission data on the deployment of other CubeSats. Additionally, this CubeSat should test optical communication capabilities between the CubeSat and Earth.

Table 7: Overview of the 10 selected US secondary missions for the inaugural Orion/EM-1 test flight plus three CubeSats from international partners 80) 81)

All the CubeSats will ride to space inside the OSA (Orion Stage Adapter), which sits between the ICPS (Interim Cryogenic Propulsion Stage) and Orion (Figure 62). The CubeSats will be deployed following Orion separation from the upper stage and once Orion is a safe distance away.

The SPIE ( Spacecraft and Payload Integration and Evolution) office is located at NASA/MSFC (Marshall Space Flight Center) in Huntsville, Alabama, which handles integration of the secondary payloads.

These small satellites are designed to be efficient and versatile—at no heavier than 14 kg, they are each about the size of a boot box, and do not require any extra power from the rocket to function. The science and technology experiments enabled by these small satellites may enhance our understanding of the deep space environment, expand our knowledge of the moon, and demonstrate technology that could open up possibilities for future missions. 82)

A key requirement imposed on the EM-1 secondary payload developers is that the smallsats do not interfere with Orion, SLS or the primary mission objectives. To meet this requirement, payload developers must take part in a series of safety reviews with the SLS Program’s Spacecraft Payload Integration & Evolution (SPIE) organization, which is responsible for the Block 1 upper stage, adapters and payload integration. In addition to working with payload developers to ensure mission safety, the SLS Program also provides a secondary payload deployment system in the OSA (Orion Space Adapter). The deployment window for the CubeSats will be from the time ICPS disposal maneuver is complete (currently estimated to require about four hours post-launch) to up to 10 days after launch. 83)

Deployment windows of secondary payloads: The smallsats manifested on EM-1 will undertake a diverse variety of experiments and technology demonstrations. Seven payloads will be deployed after the ICPS has cleared the first Van Allen Radiation Belt (bus stop 1, Figure 61).

• JAXA, the Japanese Space Agency, will have two smallsats deploy at the first stop: OMOTENASHI will land the smallest lander to date on the lunar surface to demonstrate the feasibility of the hardware for distributed cooperative exploration systems. If this mission is successful, Japan will be the fourth nation to successfully land a mission on the Earth’s moon. The other JAXA payload, EQUULEUS, will fly to a libration orbit around the EML2 (Earth-Moon L2) point and demonstrate trajectory control techniques within the sun-Earth-moon region for the first time by a smallsat.

• Lunar Flashlight is a NASA/JPL ( Jet Propulsion Laboratory) mission that will look for ice deposits and identify locations where resources may be extracted from the lunar surface.

OrionEM1_Auto2

Figure 61: Providing smallsats with extraordinary access to deep space, SLS presented payload developers with several “bus stops,” or deployment opportunities, for the first mission; similar opportunities are expected to be available on future missions (image credit: NASA)

• The NASA/ARC ( Ames Research Center) developed the BioSentinel mission is a yeast radiation biosensor that will measure effects of space radiation on DNA.

• ArgoMoon, sponsored by the Agenzia Spaziale Italiana (ASI), will perform proximity operations with the ICPS post-disposal and record imagery of engineering and historical significance — as well as of the Earth and moon — by testing an advanced software imaging recognition system using high-definition cameras.

• Cislunar Explorers, a team from Cornell University in Ithaca, New York, competing in NASA’s Cube Quest Centennial Challenge competition, has designed a 6U CubeSat that will split into two smaller spacecraft that will orbit the moon using a novel propulsion system of inert water to carry out gravity assists with the moon, and then be captured into lunar orbit.

• Finally, Lunar Icecube, developed by Morehead State University in Kentucky, will search for water in ice, liquid and vapor forms as well as other lunar volatiles from a low-perigee, highly inclined lunar orbit using a compact infrared spectrometer.

• About 90 minutes after the ICPS clears the first Van Allen Belt, the NEA Scout (Near Earth Asteroid) Scout, a NASA/MSFC (Marshall Space Flight Center) mission equipped with a solar sail to rendezvous with an asteroid, will be deployed. NEA Scout will gather detailed imagery and observe the asteroid’s position in space.

• After the ICPS has cleared both radiation belts, the LunaH-Map (Lunar-Polar Hydrogen Mapper) payload from Arizona State University will be released. LunaH-Map will help scientists understand the quantity of hydrogen-bearing materials in cold traps in permanently shaded lunar craters via low-altitude flybys of the moon’s south pole.

• About one hour after clearing the radiation belts (bus stop 2, Figure 61), Lockheed Martin’s LunIR spacecraft, a technology demonstration mission that will perform a lunar flyby, will be deployed. Using a miniature high-temperature MWIR (Mid-Wave Infrared) sensor to collect spectroscopy and thermography data, LunIR will provide data related to surface characterization, remote sensing and site selection for lunar future missions.

About 12 hours after the ICPS passes the moon (bus stop 5, Figure 61) and uses its gravity to enter heliocentric orbit, the final three smallsats will be released.

• The CuSP (CubeSat Mission to Study Solar Particles) mission of SwRI (Southwest Research Institute) in San Antonio, Texas, will study the sources and acceleration mechanisms of solar and interplanetary particles in near-Earth orbit, support space weather research by determining proton radiation levels during ESP (Solar Energetic Particle) events and identifying suprathermal properties that could help predict geomagnetic storms.

• Team Miles, of Miles Space, LLC, of Tampa, Florida, another Cube Quest competitor, has a mission that will fly autonomously using a sophisticated onboard computer system. The spacecraft will be propelled by evolutionary plasma thrusters.

• The final Cube Quest entrant, the University of Colorado CU-E3 (Earth Escape Explorer), is a CubeSat from the University of Colorado in Boulder, Colorado, that will use solar radiation pressure rather than an onboard propulsion system.


Block 1 SmallSat Accommodations:

To release the payloads, the SLS Program installed a secondary payload deployment system in the OSA (Orion Space Adapter) that includes mounting brackets for the COTS (Commercial Off-The-Shelf) dispensers, cable harnesses and an avionics unit. Prior to shipping the completed OSA to the EGS (Exploration Ground Systems) Program at Kennedy, engineers at Marshall Space Flight Center tested the avionics unit to ensure possible scripts for controlling bus stop deployments performed as expected based on the flight time to the moon. For EM-1, each payload developer is responsible for the payload, the specified dispenser, vibration isolation system and thermal protection (Ref. 83).

Before the OSA is stacked on the ICPS in Kennedy’s Vehicle Assembly Building, the EGS Program will install the payloads previously integrated in their COTS dispensers onto the brackets. Then the payloads and the deployment avionics unit’s batteries will be charged. EGS technicians will connect the electrical ground support equipment to the secondary payload deployment system via the OSA. The electrical ground support equipment will be removed and no further interaction with the payloads will be performed. On launch day, ICPS contractor ULA (United Launch Alliance) will load the upper stage operational parameters for the flight, including data needed for the secondary payload deployment system avionics unit to perform the correct skit for the mission based on trip time to the moon and when the payloads need to be deployed to complete their missions.

After the TLI (Translunar Injection) burn and separation of Orion from the ICPS/OSA, and conclusion of most of the ICPS disposal maneuvers, the ICPS will power on the secondary payload deployment system. The ICPS will put itself into a 1 rpm roll and be pointed at a 55º beta angle to the sun and proceed with hydrazine depletion as part of stage disposal. Once the propellant is spent, the ICPS will take one more set of readings, downlink those readings and shut down. Soon after, the ICPS/OSA and secondary payload deployment system arrive at the first bus stop where seven payloads will be released into deep space.

Another noteworthy benefit SLS provides to the EM-1 smallsats is the ability to incorporate propulsion systems on the payloads. In most smallsat missions to LEO, CubeSats are restricted from having propulsion systems. Smallsats operating in deep space, on the other hand, require propulsion systems in many mission scenarios. The EM-1 CubeSats employ several types of propulsion systems, including ion, solid, green propellant, solar, pressure, etc., providing mission developers with the rare opportunity to utilize these small propulsion systems in deep space.

A prime example of both extraordinary deep space exploration opportunities and cooperation among numerous organizations, the 13 EM-1 6U-class payloads present the opportunity for science and technology advancement on what is otherwise a demonstration flight, paving the way for additional opportunities for CubeSats on future SLS missions.

OrionEM1_Auto1

Figure 62: At the top of the Block 1 configuration, the OSA (Orion Stage Adapter) has capacity for 13-17 smallsats; the SLS Program provides an integrated deployment system for the payloads (image credit: NASA)

OrionEM1_Auto0

Figure 63: Secondary payloads infographic (image credit: NASA) 84)

The secondary payloads will be described in separate files on the eoPortal — if sufficient technical information is available of each secondary mission.


Interplanetary CubeSats take advantage of the CubeSat paradigm and of the availability of commercial components developed for LEO (Low Earth Orbit) missions, but they are specifically designed to explore deep space. As a result, interplanetary CubeSats are essentially very different from LEO CubeSats in at least three technological areas: propulsion, radiation tolerance and telecommunication. 85)

In particular, interplanetary CubeSats require changes in almost every subsystem. To start, they generally need a propulsion system. In addition, they often need power systems with lower power modes and higher energy storage capabilities since they have more power requirements than LEO missions, due to the presence of propulsion and due to demanding telecommunication systems. Interplanetary CubeSats also require radiation tolerant components as they are significantly far from the protection of the Earth magnetosphere which is instead granted to the LEO CubeSat missions. For what concerns ADCS (Attitude Determination and Control Subsystem ), interplanetary CubeSats need a combination of traditional control system and propulsion to avoid the issues of wheel`s saturation outside the Earth`s geomagnetic field. In terms of autonomy, interplanetary missions will have less frequent contact with the ground than LEO missions and they will need agile algorithms to facilitate autonomous on board operations.

Finally, one of the most important changes between LEO missions and interplanetary missions is represented by the telecommunication systems. Telecommunication systems for interplanetary CubeSats face harsher environments, longer path distances and have more navigation needs than the LEO CubeSats. For this reason, the design of telecommunication systems for interplanetary missions is extremely challenging and significant development is currently ongoing in the areas of radio design, antenna design and in the design of ground support architectures.

Telecommunication systems for Lunar IceCube and LunaH-Map.

An effort is underway at JPL to develop a common set of telecommunication hardware systems to fit the envelope of these missions’ goals. As a result, the two missions share the same radio (Iris transponder), the same low noise amplifiers, the same low gain patch antennas, and they are equipped with very similar SSPAs (Solid State Power Amplifiers) that differ only in the power levels that they provide. Additionally, Lunar IceCube and LunaH-Map will share the use of the DSN (Deep Space Network) antennas and of the Morehead State University 21 m station, which is currently being upgraded especially for this purpose.



1) Massimiliano Bottacini, Julie Grantier, Matthias Gronowski, Bill Johns, ”The European Service Module Contribution to the Orion Program,” Proceedings of the 66th International Astronautical Congress (IAC 2015), Jerusalem, Israel, Oct.12-16, 2015, paper: IAC-15-A5.1.3

2) Joshua B. Hopkins, Keith Reiley, Thomas Martin, Don Sauvageau, ”SLS-Orion Missions Leading to Humans on Mars,” Proceedings of the 66th International Astronautical Congress (IAC 2015), Jerusalem, Israel, Oct.12-16, 2015, paper: IAC-15-D2.1.3

3) William H. Gerstenmaier, ”Beyond the International Space Station,” Proceedings of the 67th IAC (International Astronautical Congress), Guadalajara, Mexico, Sept. 26-30, 2016, paper: IAC-16-B3,1,1

4) ”NASA's Journey to Mars, Pioneering Next Steps in Space Exploration,” NASA, NP-2015-08-2018-HQ, October 2015, URL: https://www.nasa.gov/sites/default/files/atoms
/files/journey-to-mars-next-steps-20151008_508.pdf

5) Kirk A. Shireman, Kathleen C. Laurini, Joel R. Montalbano, ”The International Space Station: The First Step on the Journey to Mars,” Proceedings of the 67th IAC (International Astronautical Congress), Guadalajara, Mexico, Sept. 26-30, 2016, paper: IAC-16.B.3.1.2

6) Ken Kremer, ”Orion Gets Beefed Up, Silver-Metallic Thermal Protection Coating for Next Flight on EM-1,” Universe Today, Nov. 30, 2015, URL: http://www.universetoday.com/123114
/orion-gets-beefed-up-silver-metallic-thermal-protection-coating-for-next-flight-on-em-1/

7) ”Exploration Mission-1 Crew Module Comes Together,” NASA Orion Monthly Newsletter, Sept. 2015, URL: https://www.nasa.gov/sites/default/files/atoms/files/orion_monthly_newsletter_9-2015.pdf

8) ”Orion Ingenuity Improves Manufacturing While Reducing Mass,” NASA, Nov. 17, 2015, URL: http://www.nasa.gov/feature/orion-ingenuity-improves-manufacturing-while-reducing-mass

9) ”Orion: Lessons Learned from EFT-1 and, EM-1, AA-2, and EM-2 status,” Proceedings of the 67th IAC (International Astronautical Congress), Guadalajara, Mexico, Sept. 26-30, 2016, paper: IAC-16,B3,9-GTS.2.1

10) ”Orion European Service Module,” ESA, Dec. 1, 2015, URL: http://www.esa.int/Our_Activities/Human_Spaceflight/Orion/European_Service_Module

11) Philippe Deloo, Joel Kearns, Oliver Juckenhöfel, Tony Byers, ”Development Status of the “European built” Orion Service Module,” Proceedings of the 66th International Astronautical Congress (IAC 2015), Jerusalem, Israel, Oct.12-16, 2015, paper: IAC-15-B3.1.6

12) Markus Jäger, Matthias Gronowski, Massimiliano Bottacini, ”Orion European Service Module on the Way to first Flight Model Delivery,” Proceedings of the 67th IAC (International Astronautical Congress), Guadalajara, Mexico, Sept. 26-30, 2016, paper: IAC-16-B3.7.4

13) ”Orion’s first Service Module integration complete,” ESA, 18 September 2018, URL: http://m.esa.int/Our_Activities/Human_Spaceflight
/Orion/Orion_s_first_Service_Module_integration_complete

14) ”Heat Shield Install Brings Orion Spacecraft Closer to Space,” NASA, 16 August 2018, URL: https://www.nasa.gov/feature/heat-shield-install-brings-orion-spacecraft-closer-to-space

15) ”EM-1 and EM-2 Make Progress Across NASA and the Nation,” NASA, APPEL, 6 June 2018, URL: https://appel.nasa.gov/2018/06/06
/em-1-and-em-2-make-progress-across-nasa-and-the-nation/

16) ”Fuel tanks and wings for Orion module,” ESA, 23 April 2018, URL: http://m.esa.int/Our_Activities/Human_Spaceflight/Orion/Fuel_tanks_and_wings_for_Orion_module

17) Leejay Lockhart and Amanda Griffin, ”A Window to Space,” NASA, 20 April 2018, URL: https://www.nasa.gov/feature/a-window-to-space

18) ”NASA Deep Space Exploration Systems Look Ahead to Action-Packed 2018,” 5 Jan. 2018, URL: https://www.nasa.gov/feature
/nasa-deep-space-exploration-systems-look-ahead-to-action-packed-2018

19) ”NASA Team Outfits Orion for Abort Test with Lean Approach,” NASA, 5 March 2018, URL: https://www.nasa.gov/feature/nasa-team-outfits-orion-for-abort-test-with-lean-approach

20) ”Thermal Cycle Test Confirms Orion and its Systems,” NASA, 16 Feb. 2018, URL: https://www.nasa.gov/feature/thermal-cycle-test-confirms-orion-and-its-systems

21) Philip Sloss,”Constructing the crewed Orion – EM-2 spacecraft deep into welding operations,” NASA Spaceflight.com, 14 Feb. 2018, URL:
https://www.nasaspaceflight.com/2018/02/constructing-the-crewed-orion-em-2-welds/

22) ”Work Progresses on Orion Powerhouse for Crewed Mission,” NASA, Oct. 12, 2017, URL: https://www.nasa.gov/image-feature/work-progresses-on-orion-powerhouse-for-crewed-mission

23) Nico Dettmann, Philippe Berthe, ”Orion European Service Module Development Status and NASA/ESA Cooperation,” Proceedings of the 68th IAC (International Astronautical Congress), Adelaide, Australia, 25-29 Sept. 2017, paper: IAC-17, B3,1,8

24) Markus Jäger, Matthias Gronowski, ”Orion European Service Module Ready for Delivery,” Proceedings of the 68th IAC (International Astronautical Congress), Adelaide, Australia, 25-29 Sept. 2017, paper: IAC-17, B3,7,1

25) ”Lockheed Martin Powers-up Next Orion Spacecraft for First Time,” Space Daily, August 24, 2017, URL: http://www.spacedaily.com/reports
/Lockheed_Martin_Powers_up_Next_Orion_Spacecraft_for_First_Time_999.html

26) ”Lockheed Martin Powers-up Next Orion Spacecraft for First Time,” PR Newswire, Aug. 22, 2017, URL: http://www.prnewswire.com/news-releases
/lockheed-martin-powers-up-next-orion-spacecraft-for-first-time-300507210.html

27) William Harwood, ”NASA rules out crew on first SLS flight,” Spaceflight Now, May 12, 2017, URL: https://spaceflightnow.com/2017/05/12/nasa-rules-out-crew-on-first-sls-flight/

28) ”NASA Affirms Plan for First Mission of SLS, Orion,” NASA, May 12, 2017, URL: https://www.nasa.gov/feature/nasa-affirms-plan-for-first-mission-of-sls-orion

29) Brian Dunbar, ”NASA to Study Adding Crew to First Flight of SLS and Orion,” NASA, Feb. 15, 2017, URL: https://www.nasa.gov/feature/nasa-to-study-adding-crew-to-first-flight-of-sls-and-orion

30) ”Curtiss-Wright ships miniature network data system for Orion,” Space Daily, April 6, 2017, URL: http://www.spacedaily.com/reports/Curtiss_Wright_Ships_Miniature_Network
_Space_Data_Acquisition_System_for_NASAs_Orion_Spacecraft_Program_999.html

31) ”Waiting for the burn,” ESA, Feb. 27, 2017, URL: http://m.esa.int/spaceinimages/Images/2017/02/Waiting_for_the_burn

32) ”Europe will provide propulsion, life support to astronauts on missions beyond the Moon First crewed mission planned for 2021, beginning a new era of human deep space exploration,” Airbus DS, Feb. 16, 2017, URL: https://orionesm.airbusdefenceandspace.com/blog
/airbus-defence-and-space-wins-200-million-euros-esa-contract
-for-second-service-module-for-nasas-orion-crewed-space-capsule/

33) ”Airbus Defence and Space delivers propulsion test module for the Orion program to NASA,” Airbus DS, Jan. 24, 2017, URL: https://airbusdefenceandspace.com/newsroom/news-and-features
/airbus-defence-and-space-delivers-propulsion-test-module-for-the-orion-programme-to-nasa/

34) ”Testing completed on Orion Service Module,” ESA, Dec. 14, 2016, URL: http://www.esa.int/Our_Activities/Human_Spaceflight/Orion
/Testing_completed_on_Orion_service_module

35) Stephen Clark, ”Shuttle engine delivered to Orion service module assembly site,” Spaceflight Now, January 2, 2017, URL: https://spaceflightnow.com/2017/01/02
/shuttle-engine-delivered-to-orion-service-module-assembly-site/

36) ”Gearing up for Orion propulsion subsystem tests,” ESA, Sept. 21, 2016, URL: http://blogs.esa.int/orion/2016/09/21/gearing-up-for-orion-propulsion-subsystem-tests/

37) ”ESA to supply Service Module for the first crewed Orion mission,” ESA, Dec. 7, 2016, URL: http://www.esa.int/Our_Activities/Human_Spaceflight/Orion
/ESA_to_supply_Service_Module_for_first_crewed_Orion_mission

38) Linda Herridge, ”Orion Crew Module Adapter Lifted in Processing Facility at NASA’s Kennedy Space Center,” NASA, Nov. 21, 2016, URL: https://blogs.nasa.gov/kennedy/2016/11/21
/orion-crew-module-adapter-lifted-in-processing-facility-at-nasas-kennedy-space-center/

39) Linda Herridge, ”Orion Heat Shield for Next Space Flight arrives at NASA's Kennedy Space Cente,” NASA, Sept. 19, 2016: URL: https://www.nasa.gov/image-feature
/orion-heat-shield-for-exploration-mission-1-arrives-at-nasas-kennedy-space-center-in

40) ”Orion’s Service Module Completes Critical Design Review,” NASA, June 27, 2016, URL: https://www.nasa.gov/feature/orion-s-service-module-completes-critical-design-review

41) Mark Garcia, ”Orion Service Module Testing Sounds Off,” NASA, May 25, 2016: URL: http://www.nasa.gov/exploration/systems/sls/international-partners-provide-cubesats-for-sls-maiden-flight

42) ”Airbus Defence and Space starts Orion service module assembly,”Airbus DS Press Release, May 19, 2016, URL: https://airbusdefenceandspace.com/newsroom/news-and-features
/airbus-defence-and-space-starts-orion-service-module-assembly/

43) Linda Herridge, ”Orion Passes the Pressure Test,” NASA, May 11, 2016, URL: http://www.nasa.gov/feature/orion-passes-the-pressure-test

44) ”Testing Orion's European Structural Test Article,” ESA, April 29, 2016, URL: http://www.esa.int/spaceinimages/Images/2016/04
/Testing_Orion_s_European_Structural_Test_Article

45) ”Orion's wings,” ESA, March 1, 2016, URL: http://www.esa.int/spaceinimages/Images/2016/03/Orion_s_wings

46) Ken Kremer, ”NASA’s Orion Crew Module Backbone Arrives at KSC Aboard Super Guppy for Exploration Mission-1,” Universe Today, Feb. 2, 2016, URL: http://www.universetoday.com/127128
/nasas-orion-crew-module-backbone-arrives-ksc-aboard-super-guppy-exploration-mission-1/

47) ”Mated,” ESA, Jan. 22, 2016, URL: http://www.esa.int/spaceinimages/Images/2016/01/Mated

48) Ken Kremer, ”NASA Completes Welding on Lunar Orion EM-1 Pressure Vessel Launching in 2018,” Universe Today, Jan. 22, 2016, URL:
http://www.universetoday.com/126581/nasa-completes-welding-on-lunar-orion/

49) ”Orion’s Critical Design Review an important milestone toward Exploration Mission-1,” Spaceflight Insider, Nov. 16, 2015, URL: http://www.spaceflightinsider.com
/organizations/lockheed-martin-organizations/orions-critical-
design-review-important-milestone-toward-exploration-mission-1/

50) ”Test model arrives,” ESA, Nov. 10, 2015, URL: http://www.esa.int/spaceinimages/Images/2015/11/Test_model_arrives

51) ”Orion's European module ready for testing,” ESA, Nov. 10, 2015, URL: http://www.esa.int/Our_Activities/Human_Spaceflight/Orion_s_European_module_ready_for_testing

52) ”Test Version of European Powerhouse for Orion Arrives Stateside,” NASA Monthly Newsletter, Nov. 2015, URL: https://www.nasa.gov/sites/default/files/atoms/files/orion_monthly_newsletter_11-2015.pdf

53) ”Orion ESM structural test model,” ESA, Nov. 6, 2015, URL: http://www.esa.int/spaceinimages/Images/2015/11/Orion_ESM_structural_test_model

54) ”Lockheed Martin Moves into Full-Scale Assembly and Test of NASA’s Orion Spacecraft,” Lockheed Martin, Oct. 26, 2015, URL: http://www.lockheedmartin.com/us/news
/press-releases/2015/october/space-orion-assembly.html

55) ”Orion Program makes progress with Critical Design Review,” NASA Orion Monthly Newsletter, Oct. 2015, URL: https://www.nasa.gov/sites/default/files/atoms
/files/orion_monthly_newsletter_10-2015_web.pdf

56) Kathryn Hambleton, Shannon Ridinger, ”NASA Completes Critical Design Review for Space Launch System,” NASA, Release 15-210, Oct. 22, 2015, URL: https://www.nasa.gov/press-release
/nasa-completes-critical-design-review-for-space-launch-system

57) ”Aerojet Rocketdyne Subsystems Critical Design Review Passes Muster = Depends On Safety Of Astronauts In Deep Space,” Satnews Daily, Oct. 12, 2015, URL:
http://www.satnews.com/story.php?number=469038823

58) Kathryn Hambleton, Rachel Kraft, “First Pieces of NASA’s Orion for Next Mission Come Together at Michoud,” NASA Release 15-182, Sept. 8, 2015, URL: http://www.nasa.gov/press-release
/first-pieces-of-nasa-s-orion-for-next-mission-come-together-at-michoud

59) “Seven Pieces Rather Than 18 Make For A Far Less Weighty Orion Spacecraft,” Satnews Daily, Sept. 9, 2015, URL: http://www.satnews.com/story.php?number=403645842

60) Philip Sloss, ”EM-1 Update: Making progress, but still behind schedule,” NASA Spaceflight.com, 3 April 2018, URL: https://www.nasaspaceflight.com/2018/04/em-1-update-progress-still-behind-schedule/

61) Stephen Clark, ”NASA expects first Space Launch System flight to slip into 2020,” Spaceflight Now, 20 November 2017, URL: https://spaceflightnow.com/2017/11/20
/nasa-expects-first-space-launch-system-flight-to-slip-into-2020/

62) ”NASA Human Space Exploration, Delay Likely for First Exploration Mission,” GAO Report to Congressional Committees, April 2017, URL: http://www.gao.gov/assets/690/684360.pdf

63) Kathryn Hambleton, ”Around the Moon with NASA’s First Launch of SLS with Orion,” NASA 8 March 2018 (updated 27 March 2018), URL:
https://www.nasa.gov/feature/around-the-moon-with-nasa-s-first-launch-of-sls-with-orion

64) ”Exploration Mission-1 Map,” NASA, 9 Feb. 2018, URL:
https://www.nasa.gov/image-feature/exploration-mission-1-map

65) Jennifer Harbaugh, ”NASA Completes Welding on Massive Fuel Tank for First Flight of SLS Rocket,” NASA, Sept. 30, 2016, URL: http://www.nasa.gov/exploration/systems/sls
/multimedia/welding-complete-on-fuel-tank-for-sls-rocket

66) Kimberly F. Robinson, Scott F. Spearing, David Hitt, ”NASA’s Space Launch System: Opportunities for Small Satellites to Deep Space Destinations,” Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan UT, USA, Aug. 4-9, 2018, paper: SSC18-IX-02, URL: https://digitalcommons.usu.edu/cgi
/viewcontent.cgi?article=4119&context=smallsat

67) Janet Anderson, Jennifer Harbaugh, ”NASA Administrator Views Progress Building SLS and Orion Hardware,” NASA, 14 August 2018, URL: https://www.nasa.gov/centers/marshall/michoud
/administrator-views-progress-building-sls-and-orion-hardware

68) ”First SLS Core Stage Flight Hardware Complete, Ready for Joining,” NASA, 31 July 2018, URL: https://www.nasa.gov/exploration/systems/sls
/first-sls-core-stage-flight-hardware-complete-ready-for-joining

69) ”Orion Jettison Motor Ready for Crew Escape System Test,” Space Daily, 10 July 2018, URL: http://www.spacedaily.com/reports
/Orion_Jettison_Motor_Ready_for_Crew_Escape_System_Test_999.html

70) Jennifer Harbaugh, ”NASA's Super Guppy Transports SLS Flight Hardware to Kennedy Space Center,” NASA, 3 April 2018, URL: https://www.nasa.gov/exploration/systems/sls
/multimedia/guppy-transports-sls-flight-hardware-to-kennedy-space-center

71) ”Space Launch System Solid Rocket Booster Avionics Complete Key Testing,” NASA, 22 Dec. 2017, URL: https://www.nasa.gov/langley/image-feature
/space-launch-system-booster-separation-tested-in-wind-tunnel

72) Mark Garcia, ”Orion Parachute Tests Prove Out Complex System for Human Deep Space Missions,” NASA, 15 Dec. 2017, URL: https://www.nasa.gov/feature
/orion-parachute-tests-prove-out-complex-system-for-human-deep-space-missions

73) ”NASA Completes Review of First SLS, Orion Deep Space Exploration Mission,” NASA, 8 Nov. 2017, URL: https://www.nasa.gov/feature
/nasa-completes-review-of-first-sls-orion-deep-space-exploration-mission

74) ”Space Launch System Booster Separation Tested In Wind Tunnel,” NASA/LaRC, 8 Nov. 2017, URL: https://www.nasa.gov/langley/image-feature
/space-launch-system-booster-separation-tested-in-wind-tunnel

75) ”NASA Showcases Flight Engine Test During Stennis Open House,” NASA, Press Release S17-072, 19 Oct. 2017, URL: https://www.nasa.gov/news/2017
/nasa-showcases-flight-engine-test-during-stennis-open-house

76) Chris Gebhardt, ”SLS EM-1 & -2 launch dates realign; EM-3 gains notional mission outline,” NASA Spaceflight.COM, Sept. 22, 2017, URL:
https://www.nasaspaceflight.com/2017/09/sls-em-1-em-3-notional-mission-outline/

77) Jody Singer, Joseph Pelfrey, George Norris, ”Enabling Science and Deep Space Exploration through Space Launch System (SLS) Secondary Payload Opportunities,” Proceedings of the 14th International Conference on Space Operations (SpaceOps 2016), Daejeon, Korea, May 16-20, 2016, paper: AIAA 2016 2585, URL: http://arc.aiaa.org/doi/pdf/10.2514/6.2016-2585

78) Kathryn Hambleton, Kim Newton, / Shannon Ridinger, ”NASA Space Launch System’s First Flight to Send Small Sci-Tech Satellites Into Space,” NASA Press Release 16-011, Feb. 2, 2016, URL: http://www.nasa.gov/press-release
/nasa-space-launch-system-s-first-flight-to-send-small-sci-tech-satellites-into-space

79) Christopher Moore, Jitendra Joshi, Nicole Herrmann, ”Deep-Space CubeSats on Exploration Mission-1,” Proceedings of the 68th IAC (International Astronautical Congress), Adelaide, Australia, 25-29 Sept. 2017, paper:IAC-17-B4.8

80) ”Three DIY CubeSats Score Rides on NASA’s First Flight of Orion, Space Launch System,” NASA Release 17-055, 8 June 2017, URL: https://www.nasa.gov/press-release
/three-diy-cubesats-score-rides-on-nasa-s-first-flight-of-orion-space-launch-system

81) Kathryn Hambleton, Kim Henry, Tracy McMahan, ”International Partners Provide Science Satellites for America’s Space Launch System Maiden Flight,” NASA, 26 May 2016 and update of 07 February 2018, URL: https://www.nasa.gov/exploration/systems/sls
/international-partners-provide-cubesats-for-sls-maiden-flight

82) ”Smallsats Of Scientific Persuasions To Be Supplied By International Partners To NASA For The Maiden Flight Of SLS,” Satnews Daily, May 31, 2016, URL:
http://www.satnews.com/story.php?number=1735749470

83) Kimberly F. Robinson, Scott F. Spearing, David Hitt, ”NASA’s Space Launch System: Opportunities for Small Satellites to Deep Space Destinations,” Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan UT, USA, Aug. 4-9, 2018, paper: SSC18-IX-02, URL: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4119&context=smallsat

84) NASA, Feb. 1, 2016, URL: https://www.nasa.gov
/launching-science-and-technology/multimedia/secondarypayloadinfographic.html

85) Alessandra Babuscia, Krisjani Angkasa, Benjamin Malphrus, Craig Hardgrove, ”Development of telecommunication systems and ground support for EM-1 interplanetary CubeSats missions: Lunar IceCube and LunaH-Map,” Proceedings of the 68th IAC (International Astronautical Congress), Adelaide, Australia, 25-29 Sept. 2017, paper: IAC-17-B4,8,4


The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: ”Observation of the Earth and Its Environment: Survey of Missions and Sensors” (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (herb.kramer@gmx.net).

Orion Vehicle    ESM    Development Status    Launch    SLS    Payloads    References    Back to Top