Minimize Lunar Pathfinder

Lunar Pathfinder Minisatellite Mission

Development Status    References

Following the European Space Agency Ministerial Council Space19+ meeting in Seville at which the UK Space Agency confirmed it will invest £374 million per year with ESA, Surrey Satellite Technology Ltd (SSTL) is pleased to announce the kick-off for the implementation phase of its Lunar data-relay spacecraft, Lunar Pathfinder. 1)

LunarPath_AutoD

Figure 1: Lunar Pathfinder is a Commercial Lunar Mission Support Service to provide data services via S-band and UHF links to lunar assets, and an X-band link to Earth (image credit: SSTL)

Phil Brownnett, SSTL’s Managing Director said “Lunar Pathfinder will be the first commercial service to address the need for data relay around the Moon, and will not only demonstrate an innovative business idea, but we fully expect it to also stimulate the emerging Lunar market. By pioneering a commercial solution and service delivery model in lunar orbit, SSTL and ESA are opening the door to providing services to the solar system, and contributing to the scientific progress of deep space exploration.”

The Lunar Pathfinder spacecraft is designed to provide affordable communications services to lunar missions via S-band and UHF links to lunar assets on the surface and in orbit around the Moon, and an X-band link to Earth. As early as Q4 2022, the 280 kg Lunar Pathfinder spacecraft will be a mission enabler for polar and far-side missions, which, without direct line of sight of the Earth, would otherwise have to procure their own communications relay spacecraft. Lunar Pathfinder is a more cost effective alternative to Direct-to-Earth solutions and a credible alternative to institutional deep-space ground stations, offering orbiters and near-side missions a better availability, enhanced safety and improved data-rate.

”The Moon is a cornerstone of ESA’s exploration strategy,” says David Parker, ESA’s director of human and robotic exploration, “this decade we will see humans and robots visit uncharted territory and return with new discoveries, communications is key to send scientific and operational data to Earth.”

“We are returning to the Moon with commercial and international partners, and the Lunar Pathfinder mission will be an integral part.”

To support booming demand from Lunar missions and a clear goal in the scientific community to undertake detailed study and analysis of the Aitken Basin, Lunar Pathfinder intends to operate in a stable elliptical orbit to provide long duration visibility of the Southern Lunar Hemisphere each day, with maximum opportunities for the transmission and reception of data between Earth and the lunar surface. NASA’s Artemis program also calls for “landing the first American woman and next American man at the South Pole of the Moon by 2024, followed by a sustained presence on and around the Moon by 2028” and Lunar Pathfinder is accordingly working towards a launch in Q4 2022 to support early NASA missions.

In parallel to the Lunar Pathfinder mission SSTL has been working on future plans for a constellation of spacecraft around the Moon, capable of providing enhanced communications, as well as navigation services for the Lunar market as it grows from exploration to commercial exploitation and even tourism.

Acting both as technology and service demonstrator, Lunar Pathfinder is the opportunity for scientific and commercial mission developers to support the development, test and standardization of Lunar communication infrastructure, and for emerging off-planet telecommunications to acquire experience of lunar asset operations and off-planet service delivery. Lunar Pathfinder is thus laying the foundation to support sustainable science and exploration for the next twenty years and beyond – bringing with it the possibility that when humans next set foot on the Moon we will be hearing not “Houston we’ve landed” but instead “Guildford ....

LunarPath_AutoC

Figure 2: Illustration of the Lunar Pathfinder mission in lunar orbit providing its services (image credit: SSTL)

Vision

The Commercial Lunar Mission Support Services (CLMSS) is a collaboration agreement between SSTL, Goonhilly Earth Station (GES) and the European Space Agency (ESA). This innovative commercial partnership aims to develop a European lunar telecommunications and navigation infrastructure to support lunar scientific and economic development, both for Europe and the rest of the world. The co-operation encompasses both the space and ground segments, and the commercial and regulatory support to catalyze the lunar economy and provide affordable access to lunar, and ultimately deep space, orbits.

Low Cost, High Value Missions Enabler

The first offering from the partnership is a low cost service enabling new, and regular, mission opportunities to the Moon, the next frontier for commerce and sustainable solar system exploration and exploitation.

The service opens opportunities for the deployment of low cost missions into lunar orbit through the use of a high availability, high data rate communications system. This will enable science, prospecting, capability building, education and technology demonstration applications to see a greater return of high value data, acting as a multiplier in terms of benefits, while reducing the entry cost to Lunar missions.

Through Life Mission Support Service

The first mission will offer a ride to lunar orbit for ESA payloads and nanosats, either on-board the Pathfinder spacecraft or aggregated onto the transfer stage, together with communications data relay and navigation services via Pathfinder to the GES Deep Space ground station. Future services will support customers with the integration, transportation and deployment of their payloads, offer data relay and navigation services, and a simple web-based interface for payload operations and return of mission data

Lunar landers, rovers and surface impactors

Private and agency Lunar landers, rovers and surface impactors will also be able to sign up to use the lunar communications and navigation services provided by Pathfinder and the future constellation either for primary mission operations, to provide additional capacity, or as a back-up service. For prospecting, exploring, and ultimately utilizing the far side and poles of the Moon, a communications relay service is a mission enabler, providing the vital bridge between Earth and the lunar surface for lunar landers and rovers. Exploration of the far side of the Moon, particularly the South Pole Aitkin Basin, is a key area for future robotic and human exploration due to its chemical and mineral composition. The stable elliptical orbit of Pathfinder and the future constellation will allow for long duration visibility of the Southern Lunar Hemisphere each day, with maximum opportunities for the transmission and reception of data between Earth and the lunar surface.

Call for Lunar Missions and Payloads

A call for lunar missions and payloads is now open and we invite you to discuss how we can meet your mission needs

Table 1: Lunar mission services 2) 3)

LunarPath_AutoB

Figure 3: Lunar Pathfinder, first mission in 2023 (image credit: SSTL)




Agreements & Development Status

• September 17, 2021: ESA confirmed a contract signature yesterday with Surrey Satellite Technology Ltd (SSTL) to be the main customer for their Lunar Pathfinder satellite launching in 2024 that will provide communications services around the Moon. 4)

- A whole suite of lunar exploration missions is on the horizon, many of which have ESA involvement. These include NASA’s Artemis program, commercial lunar landers, Russia’s Luna 25 and 27 landers and the future European Large Lunar Lander (EL3).

- Lunar Pathfinder is a first step towards ESA’s ambitious Moonlight vision to create a network of communications and data relay satellites serving users worldwide. Such satellites could also provide navigation data for lunar exploration, just as today we navigate using Galileo and GPS on Earth.

LunarPath_AutoA

Figure 4: Infographic: Moonlight - Navigation for the Moon. ESA’s Moonlight initiative involves expanding satnav coverage and communication links to the Moon. The first stage involves demonstrating the use of current satnav signals around the Moon. This will be achieved with the Lunar Pathfinder satellite in 2024. The main challenge will be overcoming the limited geometry of satnav signals all coming from the same part of the sky, along with the low signal power. To overcome that limitation, the second stage, the core of the Moonlight system, will see dedicated lunar navigation satellites and lunar surface beacons providing additional ranging sources and extended coverage (image credit: ESA, K Oldenburg)

- The far side and polar regions of the Moon are a particular area of interest to space agencies as a potential source of resources for water, fuel and oxygen. A communications relay satellite such as Lunar Pathfinder is necessary to ensure continuous contact for both robots and humans

- “Exploration is about discovery and returning knowledge to Earth, so in the new era of lunar exploration we require a robust and fast communications service,” says ESA’s director of Human and Robotic Exploration, David Parker. “SSTL’s Lunar Pathfinder service will be available to all, enabling lower cost lunar science, technology demonstration and commercial exploration. As a leader in lunar exploration, ESA plans to use its services extensively.”

- SSTL’s Phil Brownnett said “We are delighted to sign up ESA as our anchor customer for communication services from our Lunar Pathfinder mission. We have been collaborating with ESA since 2018 to scope Lunar Pathfinder for the commercial market, and we look forward to realizing our ambition to provide cost effective services and navigation data for users all over the world.”

LunarPath_Auto9

Figure 5: Extending satnav to the Moon. Terrestrial satnav can in principle be used to perform satnav fixes in lunar orbit. Then as a next step, as part of the Moonlight initiative, dedicated lunar satellites and surface beacons in regions of interest would increase the precision of satnav fixes, allowing reliable surface navigation and landing guidance (image credit: ESA)

- The Lunar Pathfinder mission also hosts two separate ESA experiments, the first testing the possibility of using existing navigation satellites for positioning on the Moon and the second a space weather monitor to understand radiation levels around the Moon – important for human explorers.

- Furthermore, NASA will provide a laser retro-reflector payload allowing comparison with the orbit positioning data from ESA’s navigation experiment. ESA is also discussing with NASA how Lunar Pathfinder could support its wider lunar exploration program.

- The contract was confirmed by ESA’s Director of Human and Robotic Exploration, David Parker, and SSTL’s Managing Director, Phil Brownnett, on 15 September 2021 at The Royal Society in London. Amanda Solloway, UK Government Science Minister, Josef Aschbacher, ESA’s Director General, Paul Bate, Chief Executive of the UK Space Agency, and SSTL’s Executive Chairman, Sir Martin Sweeting were also in attendance.

LunarPath_Auto8

Figure 6: Artist's rendition of SSTL's Lunar Pathfinder satellite that will provide communications services around the Moon (image credit: SSTL)

• September 16, 2021: The European Space Agency (ESA) has signed a contract with Surrey Satellite Technology Ltd (SSTL) for communications services from Lunar Pathfinder, due to launch in 2024. 5)

- ESA will be the anchor customer for services from Lunar Pathfinder which will be the first dedicated lunar communications relay spacecraft when it launches in 2024. The agreement establishes ESA’s first commercial lunar services contract to deliver new opportunities for lower cost lunar science, technology demonstration and exploration missions. In addition, ESA is working with NASA on an agreement by which NASA would launch and deliver the Lunar Pathfinder spacecraft into its operational lunar orbit in exchange for data-relay services for their own missions, making NASA one of the first users of Lunar Pathfinder services.

- SSTL’s Phil Brownnett said “We are delighted to sign up ESA as our anchor customer for communication services from our Lunar Pathfinder mission. We have been collaborating with ESA since 2018 to scope our Lunar Pathfinder mission for the commercial market, and we look forward to realizing our ambition to provide cost effective services and navigation data for lunar assets.”

- ESA’s David Parker said “Exploration is about discovery and returning knowledge to Earth, so in the new era of lunar exploration we require a robust and fast communications service, SSTL’s Lunar Pathfinder service will be available to all, enabling lower cost lunar science, technology demonstration and commercial exploration. As a leader in lunar exploration, ESA plans to use its services extensively.”

- Science Minister Amanda Solloway said: “Surrey Satellite Technology has taken Britain’s expertise in navigation and telecommunications to the next level. Having already delivered state-of-the-art communications services to the International Space Station, UK technology will now help sustainable return to the Moon for the first time in nearly 50 years. By investing in our space sector, including £11.6m today for the Lunar Pathfinder satellite, we are helping UK companies to support major international missions, firmly securing our place as a world-leading space nation.”

LunarPath_Auto7

Figure 7: The Commercial Lunar Mission Support Services contract was signed between ESA’s Director of Human and Robotic Exploration, Dave Parker, and SSTL’s Managing Director, Phil Brownnett, on 15 September 2021 at The Royal Society in London. Amanda Solloway, UK Government Science Minister, Josef Aschbacher, ESA’s Director General, Paul Bate, Director of the UK Space Agency, and SSTL’s Executive Chairman, Sir Martin Sweeting were also in attendance (image credit: SSTL)

- For prospecting, exploring, and ultimately utilizing the far side of the Moon, Lunar Pathfinder’s communications relay service will be a mission enabler, providing the vital bridge between Earth and the lunar surface. Exploring the far side of the Moon, particularly the South Pole Aitkin Basin, is a key area for future robotic and human exploration due to its chemical and mineral composition. The stable elliptical orbit of Lunar Pathfinder will allow for long duration visibility of the Southern Lunar Hemisphere each day, with maximum opportunities for the transmission and reception of data between Earth and the lunar surface.

- As well as offering communication services to orbiters and lunar surface assets, Lunar Pathfinder will as host a number of navigation and scientific experiments:

a) An ESA GNSS receiver capable of detecting weak signals coming from the Earth GNSS infrastructure (GPS and Galileo), demonstrating its potential role into Lunar navigation

b) A NASA retro-reflector to demonstrate laser ranging capabilities

c) An ESA radiation monitor to study orbital radiation conditions

- Lunar Pathfinder is supported by UK Space Agency funding via the European Space Agency (ESA) and UK company Qinetiq is working on the development of user terminals, specifically designed for compatibility to the service, for future users to plug and play.

- Lunar Pathfinder is due to operate in an Elliptical Lunar Frozen Orbit (ELFO) for an operational lifetime of 8 years. The spacecraft can operate two simultaneous channels of communication with lunar assets, one in S-band and one in UHF: communications are relayed back to Earth ground stations in X-band.

- For surface assets on the far side of the Moon, the use of data-relay infrastructure is a requirement for their missions. Without of line of sight of the Earth, they need a data-relay service such as the one offered by Lunar Pathfinder to communicate back with Earth. For polar surface assets, potentially with limited direct to Earth visibility, the use of the data-relay service provides the assurance of a communication link, whatever obstacle the terrain may put between the asset and the Earth. Rovers, constrained to remain within line of sight of the lander to relay their communication, will find a new independence, both in how far they can go from the lander and how long they can survive beyond the lander’s limited lifetime.

- For all lunar missions, including orbiters and near side surface assets, which could manage with direct to Earth communication (DTE), there is an additional economical and technical benefit to using the proximity data-relay service. Due to the proximity of the Lunar Pathfinder spacecraft, user assets could achieve higher data-rates with a lower performance, lower mass and lower cost communication module on-board, compared with the equipment needed for DTE communication.

- In 2018 SSTL and ESA signed a collaboration agreement for Commercial Lunar Mission Support Services and in May 2021 SSTL announced selection by the European Space Agency (ESA) to lead a Phase A/B1 Study under ESA’s Moonlight initiative which builds upon the success of Lunar Pathfinder. Fully integrated in the future lunar ecosystem, the objective of the future ESA Moonlight infrastructure is to provide sustainable commercial Lunar data-relay services for communication and navigation around the Moon, to every lunar missions, in a sustainable way.

• September 1, 2021: SSTL has gone live with a new Lunar Mission Builder App designed to calculate the communications service a lunar mission could receive from SSTL’s Lunar Pathfinder communications spacecraft, due to launch in 2023. The new tool is available at www.sstl.co.uk/lunarapp 6)

- SSTL’s Head of Lunar Exploration, Nelly Offord said “Our ambition is to offer cost-effective and high performance communications and localisation data for lunar orbiters and surface assets, and our new app will offer an initial calculation of the communications service they could receive – that’s valuable information for the complex planning that goes into a Moon mission.”

- Lunar Pathfinder will operate in an Elliptical Lunar Frozen Orbit (ELFO) for an operational lifetime of 8 years. The spacecraft will offer two simultaneous channels of communication to lunar assets: one in S-band and one in UHF. Communications are then relayed back to Earth from Lunar Pathfinder to ground stations, using X-band. Performance, such as coverage and data-rates of the link between user asset and Lunar Pathfinder which varies depending on the location and capabilities of the user asset, can initially be assessed using the new Lunar Mission Builder App.

- For surface assets on the far side of the Moon, the use of data-relay infrastructure is essential for their missions as, without line of sight of the Earth, they need a data-relay service such as the one offered by Lunar Pathfinder, to communicate back with Earth. For lunar polar surface assets, potentially with limited direct to Earth visibility, the use of the data-relay service provides the assurance of a communication link, whatever obstacle the terrain may put between the asset and the Earth. Rovers, constrained today to remain within line of sight of the lander to relay their communication, will find a new independence, both in how far they can go from the lander and how long they can survive beyond the lander’s limited lifetime.

- For all lunar missions, including orbiters and near side surface assets, there is an additional economical and technical benefit to using the proximity data-relay service versus direct to Earth communication; due to the proximity of the Lunar Pathfinder spacecraft, user assets could achieve higher data-rates with a lower performance, lower mass and a lower cost communication module on-board.

LunarPath_Auto6

Figure 8: Lunar Pathfinder Communications Services diagram (image credit: SSTL)

• March 18, 2021: ESA’s Lunar Pathfinder mission to the Moon will carry an advanced satellite navigation receiver, in order to perform the first ever satnav positioning fix in lunar orbit. This experimental payload marks a preliminary step in an ambitious ESA plan to expand reliable satnav coverage – as well as communication links – to explorers around and ultimately on the Moon during this decade. 7)

- Due for launch by the end of 2023 into lunar orbit, the public-private Lunar Pathfinder comsat will offer commercial data relay services to lunar missions – while also stretching the operational limits of satnav signals.

- Navigation satellites like Europe’s Galileo constellation are intended to deliver positioning, navigation and timing services to our planet, so most of the energy of their navigation antennas radiates directly towards the Earth disc, blocking its use for users further away in space.

- “But this is not the whole story," explains Javier Ventura-Traveset, leading ESA’s Galileo Navigation Science Office coordinating ESA lunar navigation activities. "Navigation signal patterns also radiate sideways, like light from a flashlight, and past testing shows these antenna ‘side lobes’ can be employed for positioning, provided adequate receivers are implemented.”

- Just like people or cars on the ground, satellites in low-Earth orbit rely heavily on satnav signals to determine their orbital position, and since ESA proved higher-orbit positioning was possible, a growing number of satellites in geostationary orbit today employ satnav receivers.

- But geostationary orbit is 35,786 km up, while the Moon is more than ten times further away, at an average distance of 384,000 km. In 2019 however, NASA’s Magnetospheric Multiscale Mission acquired GPS signals to perform a fix and determine its orbit from 187,166 km away, close to halfway the Earth-Moon distance.

- Javier adds: "This successful experimental evidence provides us high confidence since the receiver we will embark on Lunar Pathfinder will have a significantly improved sensitivity, employ both Galileo and GPS signals and will also feature a high-gain satnav antenna.”

- This high sensitivity receiver’s main antenna was developed through ESA’s General Support Technology Program, with the receiver’s main unit developed through ESA’s NAVISP (Navigation Innovation and Support Program).

- The receiver project is led by ESA navigation engineer Pietro Giordano: “The high sensitivity receiver will be able to detect very faint signals, millions of times weaker than the ones received on Earth. The use of advanced on-board orbital filters will allow to achieve unprecedented orbit determination accuracy on an autonomous basis.”

LunarPath_Auto5

Figure 9: Galileo 'side lobe' signals. Navigation satellites – such as Europe's Galileo, the US GPS, Russia’s GLONASS or their Japanese, Chinese and Indian counterparts – aim their antennas directly at Earth. Any satellite orbiting above these constellation can only hope to detect signals from over Earth’s far side, but the majority are blocked by the planet. For a position fix, a satnav receiver requires a minimum of four satellites to be visible, but this is most of the time not possible if based solely on front-facing signals. Instead, satnav receivers in higher orbits can make use of signals emitted sideways from navigation antennas, within what is known as ‘side lobes’. Just like a flashlight, radio antennas shine energy to the side as well as directly forward (image credit: ESA)

- Lunar Pathfinder’s receiver is projected to achieve positioning accuracy of around 100 m – more accurate than traditional ground tracking.

- The availability of satnav will allow the performance of ‘Precise Orbit Determination’ for lunar satellites, notes Werner Enderle, Head of ESA’s Navigation Support Office: “Traditional orbit determination for lunar orbiting satellites is performed by radio ranging, using deep space ground stations. This Lunar Pathfinder demonstration will be a major milestone in lunar navigation, changing the entire approach. It will not only increase spacecraft autonomy and sharpen the accuracy of results, it will also help to reduce operational costs.”

- While lunar orbits are often unstable, with low-orbiting satellites drawn off course by the lumpy mass concentrations or ‘mascons’ making up the Moon , Lunar Pathfinder is planned to adopt a highly-stable ‘frozen’ elliptical orbit, focused on the lunar south pole – a leading target for future expeditions.

- Earth – and its satnav constellations – should remain in view of Lunar Pathfinder for the majority of testing. The main challenge will be overcoming the limited geometry of satnav signals all coming from the same part of the sky, along with the low signal power.

LunarPath_Auto4

Figure 10: The moon. A high-definition image of the Mars Australe lava plain on the Moon taken by Japan’s Kaguya lunar orbiter in November 2007 (image credit: JAXA/NHK)

- Lunar Pathfinder's demonstration that terrestrial satnav signals can be employed to navigate in lunar orbits will be an important early step in ESA’s Moonlight initiative. Supported through three ESA Directorates, Moonlight will go on to establish a Lunar Communication and Navigation Service.

LunarPath_Auto3

Figure 11: Lunar Pathfinder will fly in a frozen elliptical orbit, focused on covering the Moon's south pole, highlighted as a prime target for future exploration (image credit: SSTL)

• October 2, 2020: Just as we navigate our way around Earth's surface using the connection between our phones and navigation satellites high above us, our missions use the very same satellites to navigate their way in space. 8)

- To pinpoint a location accurately, a receiver – in our phones or on a spacecraft – needs to collect and combine signals from at least four navigation satellites. The receiver determines its distance from each of the satellites by measuring the time that it takes for the signal to travel from the satellite to the receiver.

- Navigation satellites orbit in MEO, about 22,000 km, above Earth's surface. As they point in the direction of Earth, any spacecraft between them and Earth are served well by their signal. But around ten years ago, engineers started demonstrating that spacecraft outside the orbit of navigation satellites could also navigate in space using 'spill over' signal from the satellites.

- Then in 2012 two Discovery & Preparation studies explored a seemingly radical question: could this spill over signal even be used to navigate our way around the Moon, and if so, what kind of receiver would we need to build to be able to use these signals?

- The studies were very successful, finding that indeed, the signal from navigation satellites orbiting Earth could be used to navigate the Moon's surface. But with the signal being so weak, they found that a new type of receiver would need to be built, and at the time there was no clear application for this.

LunarPath_Auto2

Figure 12: GPS satellites – like those of Galileo, Russia’s GLONASS or their Japanese, Chinese and Indian counterparts – aim their antennas directly at Earth. Any satellite orbiting above the GPS constellation can only hope to detect signals from over Earth’s far side, but the majority are blocked by the planet. For a position fix, a satnav receiver requires a minimum of four satellites to be visible, but this is most of the time not possible if based solely on front-facing signals. Instead, GIOVE-A has been able to make use of signals emitted sideways from GPS antennas, within what is known as ‘side lobes’. Just like a flashlight, radio antennas shine energy to the side as well as directly forward (image credit: ESA)

- Fast-forwarding eight years, and ESA has invested in the development of such a receiver, and is exploring whether it could be demonstrated on the Lunar Pathfinder mission. ESA is collaborating with SSTL (Surrey Satellite Technology Ltd) and GES (Goonhilly Earth Station) on this mission, which will provide exciting new opportunities for science and technology demonstration. In particular, it will help lay the groundwork for providing navigation services around the Moon, currently studied through two ESA NAVISP activities and culminating in the Moonlight initiative.

- "We have now accurate simulation results that show that navigation signals may be used at Moon orbit and provide good performances," adds Dr Javier Ventura-Traveset, Head of the Galileo Science Office and in charge of coordinating all GNSS Moon activities for ESA's Navigation Directorate. “And with an innovative receiver in Lunar Pathfinder, we could have the first ever experimental evidence of this. This is exciting!

- "Furthermore, we are also studying how existing navigation constellations may be complemented by additional Moon-orbiting satellites, providing additional ranging signals for an optimal navigation service including Moon landing and Moon surface operations. This is being done as part of the ESA NAVISP program and through the ESA Moonlight initiative."

LunarPath_Auto1

Figure 13: SSTL, GES (Goonhilly Earth Station) and ESA have signed a collaboration agreement for Commercial Lunar Mission Support Services at the Space Symposium in Colorado Springs as of 17 April 2028. This innovative commercial partnership for exploration aims to develop a European lunar telecommunications and navigation infrastructure, including the delivery of payloads and nanosatellites to lunar orbit (image credit: SSTL)

- "The Discovery & Preparation studies have been eye-openers and they are currently being followed up by a NAVISP activity aiming to develop the highly sensitive spaceborne navigation receiver planned to fly on board Lunar Pathfinder," notes ESA Radio Navigation Engineer Pietro Giordano. "This technology will enable improved performances and much more cost-effective ways to navigate and operate missions to and around the Moon."

- It is thanks to the pioneering Discovery & Preparation studies that ESA was confident enough to invest in the new receiver. This success story demonstrates the importance of investigating in blue sky research where real-world applications are not immediately apparent. Discovery & Preparation specializes in such research and is therefore pivotal in laying the path for ESA’s future activities.

• February 2020: SSTL is in the design phase for the Lunar Pathfinder mission. 9) 10)

• 23 October 2019: ESA and NASA reaffirmed their interest in working with commercial service providers as well as international partners on missions to the Moon in a joint statement signed at the 70th annual International Astronautical Congress last week. 11)

- The statement supports the ‘Lunar Pathfinder’ mission, ESA’s first Moon partnership with European industry, addressing communication and navigation needs for future lunar exploration.

- The ‘Lunar Pathfinder’ partnership helps lay the foundation for providing communications, navigation, and operations services around the Moon. Its communications relay service is intended to link the Earth and the lunar surface.

LunarPath_Auto0

Figure 14: David Parker ESA’s Director of Human and Robotic Exploration and Thomas Zurbuchen NASA's Associate Administrator for Science signed a joint statement that welcomed the ‘Lunar Pathfinder’ mission, ESA’s first Moon partnership, during the 70th annual IAC. Alice Bunn, director of International Policy at the UK Space Agency, and Sir Martin Sweeting, founder and executive chairman of Surrey Satellite Technology Ltd. (SSTL), were also present during the signature (image credit: ESA)

- “We are working together to make the commercial lunar economy a reality,” says David Parker ESA’s Director of Human and Robotic Exploration. “We want to act as an anchor customer and institutional broker for gaining access to non-European markets. ESA supports a competitive ecosystem of European space providers.”

- Commercialization is gaining momentum in the space arena and both ESA and NASA confirmed their intention to work on lunar services with the UK Space Agency earlier this year.

- The move follows ESA’s collaboration agreement with UK partners Surrey Satellite Technology Ltd and Goonhilly Earth Station for support in lunar services, signed in April 2018.

- In the joint statement, NASA and ESA reiterated their interest to identify the elements of this potential cooperation and formalize an interagency agreement in the future.

- The two agencies have also committed to working together to supplement NASA’s own communications capabilities with those of ESA and its partners.

- NASA also confirmed its interest in having a variety of communication and navigation services to serve its robotic missions, including lunar surface activities, starting as early as end of 2022.

• 17 April 2018: ESA has signed a collaboration agreement with Surrey Satellite Technology Ltd (SSTL) and Goonhilly Earth Station (GES) for Commercial Lunar Mission Support Services at the Space Symposium in Colorado Springs, USA. This innovative commercial partnership for exploration aims to develop a European lunar telecommunications and navigation infrastructure, including the delivery of payloads and nanosats to lunar orbit. 12)

- The partnership allows for a low-risk, phased approach to implementing a sustainable, long-term commercial service and will support lunar scientific and economic development across Europe and the rest of the world. The agreement includes the upgrade of the Goonhilly Earth Station for commercial deep space services and the development of the space segment with a lunar pathfinder mission. The cooperation also encompasses the commercial and regulatory support to catalyze the lunar economy and provide affordable access to the lunar environment, and ultimately deep space.

- The agreement was signed by Sir Martin Sweeting, founder and Executive Chairman of SSTL, Ian Jones, founder and Chief Executive of GES and David Parker, Director of Human and Robotic Exploration at ESA.

- David Parker commented, “The agreement between ESA and SSTL/GES establishes ESA’s first partnership for providing commercial services in support of lunar missions. The Lunar Pathfinder mission would provide exciting new opportunities for science and technology demonstration and open deep space access to new actors.”

- Sir Martin Sweeting commented, “I am delighted that this collaboration agreement will enable new, and regular, mission opportunities to the Moon, which I believe is the next frontier for commerce and sustainable solar system exploration and exploitation.”

- Following the recent announcement of the GES ground segment upgrade to form the world’s first deep space commercial node, the partners are now jointly committed to the developing the Lunar Pathfinder space segment for a low cost “Ride and Phone Home” capability. The Lunar Pathfinder mission will offer a ticket to lunar orbit for payloads and nanosats onboard an SSTL lunar mothership spacecraft, which will provide communications data relay and navigation services between customer payloads and the GES Deep Space ground station.

- The £1m per kilogram ticket for a flight opportunity in the 2022 timeframe includes end-to-end mission service which supports the integration, transportation and deployment of payloads, the provision of data relay and navigation services via the dedicated ESA ESTRACK deep space network, and a simple web-based interface for payload operations and return of mission data.

- Private and agency Lunar landers, rovers and surface impactors will also be able to sign up to use the lunar communications and navigation services provided by the mothership either for primary mission operations, to provide additional capacity, or as a back-up service. For prospecting, exploring, and ultimately utilizing the far side of the Moon, this communications relay service will be a mission enabler, providing the vital bridge between Earth and the lunar surface. Exploring the far side of the Moon, particularly the South Pole Aitkin Basin, is a key area for future robotic and human exploration due to its chemical and mineral composition. The stable elliptical orbit of the mothership will allow for long duration visibility of the Southern Lunar Hemisphere each day, with maximum opportunities for the transmission and reception of data between Earth and the lunar surface.



1) ”SSTL Kicks-Off Lunar Pathfinder Communications Mission,” SSTL, 5 February 2020, URL: https://www.sstl.co.uk/media-hub/latest-news/2020/
sstl-kicks-off-lunar-pathfinder-communications-mis

2) ”Lunar Mission Services,” SSTL, 2020, URL: https://www.sstl.co.uk
/media-hub/featured/lunar-mission-services

3) ”Lunar Mission Services,” SSTL, URL: https://www.sstl.co.uk/what-we-do/lunar-mission-services

4) ”Path set for commercial communications around the Moon,” ESA Science & Exploration, 16 September 2021, URL: https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration
/Exploration/Path_set_for_commercial_communications_around_the_Moon

5) ”SSTL Signs Up ESA as Anchor Customer for Lunar Pathfinder,” SSTL Press Release, 16 September 2021, URL: https://www.sstl.co.uk/media-hub/latest-news
/2021/sstl-signs-up-esa-as-anchor-customer-for-lunar-pat

6) ”SSTL Launches New Lunar Mission Builder App,” SSTL Press Release, 01 September 2021, URL: https://www.sstl.co.uk/media-hub/latest-news/2021/sstl-launches-new-lunar-mission-builder-app

7) ”Galileo will help Lunar Pathfinder navigate around Moon,” ESA Applications, 18 March 2021, URL: https://www.esa.int/Applications/Navigation/Galileo_will_help_Lunar_Pathfinder_navigate_around_Moon

8) ”ESA Discovery studies lay path to navigating the Moon,” ESA Enabling & Support, 02 October 2020, URL: https://www.esa.int/Enabling_Support/Preparing_for_the_Future/
Discovery_and_Preparation/ESA_Discovery_studies_lay_path_to_navigating_the_Moon

9) Information provided by Joelle Sykes of SSTL.

10) ”Lunar Mission Flyer,” a handout of SSTL, November 2019, URL: https://www.sstl.co.uk
/getmedia/8a1c6876-50b4-4357-b3ce-66f990c20691/Lunar-Handout-November-2019.pdf

11) ”A pathway for communicating at the Moon,” ESA Science & Exploration, 23 October 2019, URL: https://www.esa.int/Science_Exploration/
Human_and_Robotic_Exploration/A_pathway_for_communicating_at_the_Moon

12) ”ESA signs collaboration agreement for commercial Lunar missions,” ESA Science & Exploration, 17 April 2018, URL: https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration
/ESA_signs_collaboration_agreement_for_commercial_Lunar_missions



The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: ”Observation of the Earth and Its Environment: Survey of Missions and Sensors” (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (herb.kramer@gmx.net).

Development Status    References    Back to top