Minimize Suomi NPP

Suomi NPP (National Polar-orbiting Partnership) Mission

Spacecraft     Launch    Mission Status     Sensor Complement    Ground Segment    References

In January 2012, NASA has renamed its newest Earth-observing satellite, namely NPP (NPOESS Preparatory Project) launched on October 28, 2011, to Suomi NPP (National Polar-orbiting Partnership). This is in honor of the late Verner E. Suomi, a meteorologist at the University of Wisconsin, who is recognized widely as "the father of satellite meteorology." The announcement was made on January 24, 2012 at the annual meeting of the American Meteorological Society in New Orleans, Louisiana.

Verner Suomi (1915-1995) was born and raised in Minnesota. He spent nearly his entire career at the University of Wisconsin-Madison, where in 1965 he founded the university's Space Science and Engineering Center (SSEC) with funding from NASA. The center is known for Earth-observing satellite research and development. In 1964, Suomi served as chief scientist of the U.S. Weather Bureau for one year. Suomi's research and inventions have radically improved weather forecasting and our understanding of global weather.

Table 1: Some background on the renaming of the NPP mission 1) 2)

NPP is a joint NASA/IPO (Integrated Program Office)/NOAA LEO weather satellite mission initiated in 1998. The primary mission objectives are:

1) To demonstrate the performance of four advanced sensors (risk reduction mission for key parts of the NPOESS mission) and their associated Environmental Data Records (EDR), such as sea surface temperature retrieval.

2) To provide data continuity for key data series observations initiated by NASA's EOS series missions (Terra, Aqua and Aura) - and prior to the launch of the first NPOESS series spacecraft. Because of this second role, NPP is sometimes referred to as the EOS-NPOESS bridging mission.

Three of the mission instruments on NPP are VIIRS (Visible/Infrared Imager and Radiometer Suite), CrIS (Cross-Track Infrared Sounder), and OMPS (Ozone Mapping and Profiler Suite). These are under development by the IPO. NASA/GSFC developed a fourth sensor, namely ATMS (Advanced Technology Microwave Sounder). This suite of sensors is able to provide cloud, land and ocean imagery, covering the spectral range from the visible to the thermal infrared, as well as temperature and humidity profiles of the atmosphere, including ozone distributions. In addition, NASA is developing the NPP S/C and providing the launch vehicle (Delta-2 class). IPO is providing satellite operations and data processing for the operational community; NASA is supplying additional ground processing to support the needs of the Earth science community. 3) 4) 5) 6) 7) 8)

CERES instrument selected for NPP and NPOESS-C1 missions: 9)

In early 2008, the tri-agency (DOC, DoD, and NASA) decision gave the approval to add the CERES (Clouds and the Earth's Radiant Energy System) instrument of NASA/LaRC to the NPP payload. The overall objective of CERES is to provide continuity of the top-of-the-atmosphere radiant energy measurements - involving in particular the role of clouds in Earth's energy budget. Clouds play a significant, but still not completely understood, role in the Earth's radiation budget. Low, thick clouds can reflect the sun's energy back into space before solar radiation reaches the surface, while high clouds trap the radiation emitted by the Earth from escaping into space. The total effect of high and low clouds determines the amount of greenhouse warming. - CERES products include both solar-reflected and Earth-emitted radiation from the top of the atmosphere to the Earth's surface.

In addition, the tri-agency decision called also for adding two instruments, namely CERES and TSIS (Total Solar Irradiance Sensor), to the payload of the NPOESS-C1 mission.

Background: The CERES instrument is of ERBE (Earth Radiation Budget Experiment) heritage of NASA/LaRC, first flown on the ERBS (Earth Radiation Budget Satellite) mission, launch Oct. 5, 1984, then on NOAA-9 (launch Dec. 12, 1984), and NOAA-10 (launch Sept. 17, 1986). The CERES instrument is flown on TRMM (Tropical Rainfall Measuring Mission), launch Nov. 27, 1997, as a single cross-track radiance sensor of short (0.3-5 μm), long- (8-12 μm) and total wave (0.3-100 μm; prototype flight model flown on TRMM). Two further advanced CERES instrument assemblies are also being flown on NASA's Terra mission (launch Dec. 18, 1999) as a dual-track scanner (two radiometers) in XT (Cross-Track ) support or in a RAPS (Rotational Azimuth Plane Scan) support mode. Another CERES instrument system (two radiometers) are being flown on Aqua of NASA (launch May 4, 2002).

The CERES instrument on NPP will provide continuity the long climate data record of the Earth's radiant energy.

In Feb. 2010, the NPOESS (National Polar-orbiting Environmental Satellite System) tri-agency program was terminated by the US government due to severe cost overruns and program delays. In 2009, an IRT (Independent Review Team) concluded that the current NPOESS program, in the absence of managerial and funding adjustments, has a low probability of success and data continuity is at extreme risk. The Office of Science and Technology, with the Office of Management and Budget and the National Security Council, as well as representatives from each agency, examined various options to increase the probability of success and reduce the risk to data continuity.

NOAA's restructured satellite program, the civilian JPSS (Joint Polar Satellite System), was created in the aftermath of the White House's Feb. 2010 decision to cancel NPOESS. The development of the new JPSS will be managed by NASA/GSFC while the spacecraft will be owned and operated by NOAA. The launch of JPSS-1 is planned for 2017.

NOAA, through NASA as its acquisition agent, will procure the afternoon orbit assets that support its civil weather and climate requirements and DoD will independently procure assets for the morning orbit military mission - referred to as DWSS (Defense Weather Satellite System). Both agencies will continue to share environmental measurements made by the system and support the operations of a shared common ground system.

The Administration decision for the restructured Joint Polar Satellite System will continue the development of critical Earth observing instruments required for improving weather forecasts, climate monitoring, and warning lead times of severe storms. NASA’s role in the restructured program will be modeled after the procurement structure of the successful POES (Polar Operational Environmental Satellite) and GOES (Geostationary Operational Environmental Satellite) programs, where NASA and NOAA have a long and effective partnership. The partner agencies are committed to maintaining collaborations towards the goal of continuity of earth observations from space.

The restructured Joint Polar Satellite System is planned to provide launch readiness capability in FY 2015 and FY 2018 (with launches of JPSS-1 in 2016 and JPSS-2 in 2019, respectively) in order to minimize any potential loss of continuity of data for the afternoon orbit in the event of an on orbit or launch failure of other components in the system. Final readiness dates will not be baselined until all transition activities are completed.

The NPP project, as preparatory mission for the NPOESS program, received its OK to continue in the early spring of 2010. However, the close partnership with NPOESS can still be seen in all the references throughout the documentation of this file.

NPP serves as a bridge mission between NASA's EOS (Earth Observing System) series of satellites and the next-generation JPSS (Joint Polar Satellite System), a NOAA program that will also collect weather and climate data.

NPP will provide on-orbit testing and validation of sensors, algorithms, ground-based operations, and data processing systems that will be used in the operational JPSS mission. By 2016, the first JPSS spacecraft will be launched into the afternoon orbit to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for spaceborne, remotely sensed environmental data. The last satellite in the JPSS mission constellation is expected to continue operations until about 2037.

Table 2: JPSS (Joint Polar Satellite System) - NPOESS program terminated 10)


Figure 1: Overview of Suomi NPP mission segments and architecture (image credit: NASA) 11)


The Suomi NPP spacecraft has been built and integrated by BATC (Ball Aerospace and Technologies Corporation) of Boulder, CO (NASA/GSFC contract award in May 2002). The platform design is a variation of BATC's BCP 2000 (Ball Commercial Platform) bus of ICESat and CloudSat heritage. The spacecraft consists of an aluminum honeycomb structure. 12) 13) 14)

The ADCS (Attitude Determination and Control Subsystem) provides 3-axis stabilization using 4 reaction wheels for fine attitude control, 3 torquer bars for momentum unloading, thrusters for coarse attitude control (such as during large-angle slews for orbital maintenance), 2 star trackers for fine attitude determination, 3 gyros for attitude and attitude rate determination between star tracker updates, 2 Earth sensors for safe-mode attitude control, and coarse sun sensors for initial attitude acquisition, all monitored and controlled by the spacecraft controls computer. ADCS provides real-time attitude knowledge of 10 arcsec (1 sigma) at the S/C navigation reference base, real-time spacecraft position knowledge of 25 m (1 sigma), and attitude control of 36 arcsec (1 sigma).

The EPS (Electrical Power Subsystem) uses GaAs solar cells to generate an average power of about 2 kW (EOL). The solar array rotates once per orbit to maintain a nominally normal orientation to the sun). In addition, a single-wing solar array is mounted on the anti-solar side of the S/C; its function is to preclude thermal input into the sensitive cryo radiators of the VIIRS and CrIS instruments. A regulated 28 ±6 VDC power bus distributes energy to all S/C subsystems and instruments. A NiH (Nickel Hydrogen) battery system provides power for eclipse phase operations.


Figure 2: Artist's rendition of the deployed Suomi NPP spacecraft (image credit: BATC)

The C&DHS (Command & Data Handling Subsystem) collects instrument data (12 Mbit/s max total) via an IEEE 1394a-2000 “FireWire” interface (VIIRS, CrIS and OMPS instruments), and stores the data on board. Communications with ATMS occurs across the MIL-STD-1553 data bus. A new 1394/FireWire chipset was developed for the communication support, bringing spaceborne communications (onboard data handling and RF data transmission) onto a new level of service range and performance.

Upon ground command or autonomously, the C&DHS transmits stored instrument data to the communication system for transmission to the ground. Also, the C&DHS generates a real-time 15 Mbit/s data stream consisting of instrument science and telemetry data for direct broadcast via X-band to in-situ ground stations.





S/C dimensions

1.3 m x 1.3 m x 4.2 m

S/C total mass

~2200 kg

Instrument data rate

12.5 Mbit/s

Payload mass

464 kg

Downlink data rate

300 Mbit/s in X-band
128 kbit/s in S-band

Position knowledge
Attitude knowledge
Attitude control

75 m each axis
< 21 arcsec each axis
<108 arcsec each axis

Table 3: Some NPP spacecraft characteristics

The spacecraft is designed to be highly autonomous. For satellite safety, the S/C controls computer monitors spacecraft subsystem and instrument health. It can take action to protect itself (for example, in the event of an anomaly that threatens the thermal or optical safety and health of the S/C, then it can enter into a safe or survival mode and stay in the mode indefinitely until ground analysis and resolution of the anomaly). In addition, the satellite is designed to require infrequent uploads of commands (the instruments operate mainly in a mapping mode and therefore require few commands even for periodic calibration activities, and a sufficiently large command buffer is available for storage of approximately 16 days of commands).

The spacecraft has an on-orbit design lifetime of 5 years (available consumables for 7 years). The S/C dry mass is about 1400 kg. NPP is designed to support controlled reentry at the end of its mission life (via propulsive maneuvers to lower the orbit perigee to approximately 50 km and target any surviving debris for open ocean entry). NPP is expected to have sufficient debris that survives reentry so as to require controlled reentry to place the debris in a pre-determined location in the ocean.


Figure 3: Photo of the nadir deck of the NPP spacecraft (image credit: BATC, IPO)


Figure 4: Suomi NPP spacecraft on-orbit configuration (image credit: NASA)

Launch: The NPP spacecraft was launched on October 28, 2011 on a Delta-2-7920-10 vehicle from VAFB, CA (launch provider: ULA). The launch delay of nearly a year was due to development/testing problems of the CrIS (Cross-track Infrared Sounder) instrument. 15) 16) 17)

Orbit: Sun-synchronous near-circular polar orbit (of the primary NPP), altitude = 824 km, inclination =98.74º, period = 101 minutes, LTDN (Local Time on Descending Node) at 10:30 hours. The repeat cycle is 16 days (quasi 8-day).


Figure 5: Photo of the NPP launch (image credit: NASA)

Secondary payloads: The secondary payloads on the Suomi NPP mission are part of NASA's ElaNa-3 (Educational Launch of Nanosatellites) initiative. All secondary payloads will be deployed from standard P-PODs (Poly Picosatellite Orbital Deployer). 18)

• AubieSat-1, a 1 U CubeSat of AUSSP (Auburn University Student Space Program), Auburn, AL, USA.

• DICE (Dynamic Ionosphere CubeSat Experiment), two nanosatellites (1.5U CubeSats) of the DICE consortium (Utah State University, Logan, UT, USA) with a total mass of 4 kg.

• E1P-2 (Explorer-1 PRIME-2) flight unit-2, a CubeSat mission of MSU (Montana State University), Bozeman, MT, USA.

• RAX-2 (Radio Aurora eXplorer-2), an NSF-sponsored 3U CubeSat of the University of Michigan, Ann Arbor, MI, USA

• M-Cubed (Michigan Multipurpose Minisat), a 1U CubeSat of the University of Michigan, Ann Arbor, MI. M-Cubed features also the collaborative JPL payload called COVE (CubeSat On-board processing Validation Experiment).

Orbit of the secondary payloads: After the deployment of the NPP primary mission, the launch vehicle transfers all secondary payloads into an elliptical orbit for subsequent deployment. This is to meet the CubeSat standard of a 25 year de-orbit lifetime as well as the science requirements of the payloads riding on this rocket. The rocket will take care of the maneuvering and when it reaches the correct orbit, it will deploy all of the secondary payloads, into an orbit of ~ 830 km x ~ 350 km, inclination = 99º.

RF communications:

The NPP satellite collects instrument data, stores the data onto a solid-state recorder of about 280 Gbit capacity. A two-axis gimbaled X-band antenna is mounted on a post above the payload to provide a high bandwidth downlink. Source science data are generated at a rate of about 12.5 Mbit/s. Global, or stored mission data will be downlinked at X-band frequencies (8212.5 MHz, data rate of 300 Mbit/s) to a 13 m ground receiving station located at Svalbard, Norway.

Two wideband transmissions carry NPP mission data: SMD (Stored Mission Data) and HRD (High-Rate Data). These transmissions are distinct from the narrowband data streams containing the satellite's housekeeping telemetry. Mission data are collected from each of the five instruments (ATMS, VIIRS, CrIS, OMPS, CERES).

These data, along with spacecraft housekeeping data, are merged and provided to the ground on a real-time 15 Mbit/s downlink, called HRD direct broadcast. Instrument and housekeeping data are also provided to the SSR (Solid State Recorder) for onboard storage and playback as SMD. The SMD are stored in the spacecraft's SSR and downlinked at 300 Mbit/ss through playback of the SSR once per orbit over the NPP/NPOESS SvalSat ground station in Svalbard, Norway.

The HRD stream is similar to the SMD as it consists of instrument science, calibration and engineering data, but it does not contain data from instrument diagnostic activities. The HRD is constantly transmitted in real time by the spacecraft to distributed direct broadcast users. Output to the HRD transmitter is at a constant 15 Mbit/s rate.

Data acquisition: In early 2004, IPO in cooperation with NSC (Norwegian Space Center), installed a 13 m antenna dish - a dual X/S-band configuration, at SGS (Svalbard Ground Station), located at 78.216º N, 20º E on the Norwegian Svalbard archipelago (also referred to as Spitzbergen) near the town of Longyearbyen. The SGS complex is owned by the Norwegian Space Center (Norsk Romsenter), Oslo, Norway, and operated by the Tromsø Satellite Station (TSS) through its contractor KSAT (Kongsberg Satellite Services). SGS is the primary data downlink site for global stored mission data (SMD) from NPP. Svalbard is located at a high enough latitude to be able to “see” (i.e., track) all 14 daily NPP satellite passes. 19)

The global NPP data will be transmitted from Svalbard within minutes to the USA via a fiber-optic cable system that was completed in January 2004 as a joint venture between the IPO, NASA, and NSC. Once the data stream is in the USA, the RDRs (Raw Data Records) will be processed into SDRs (Sensor Data Records) and EDRs by the Interface Data Processing Segment (IDPS). The performance goal calls for EDR delivery within 3 hours of acquisition. - NPP also focuses on ground segment risk reduction by providing and testing a subset of an NPOESS-like ground segment. Developed algorithms can be thoroughly tested and evaluated. This applies also to the methods of instrument verification, calibration, and validation.

Note: The new antenna and fiber-optic link at SGS are already being used to acquire data of five to ten Coriolis/WindSat passes/day and delivery of the data to users in a reliable and timely manner. Subsequent to the NPP mission, the Svalbard site and the high-speed fiber-optic link will also serve as one node in a distributed ground data communications system for NPOESS acquisition service.

The TT&C function uses S-band communications with uplink data rates of up to 32 kbit/s and downlink rates of up to 128 kbit/s. The NOAA network of polar ground stations will be used for mission operations (back-up TT&C services via TDRSS through S-band omni antennas on the satellite).


Figure 6: Overview of Suomi NPP spacecraft communications with the ground segment (image credit: NASA) 20)

Suomi NPP broadcast services:

In addition, NPP will have a real-time HRD (High Rate Data) downlink in X-band (7812.0 MHz ± 0.03 MHz) direct broadcast mode to users equipped with appropriate field terminals. The objectives are to validate the innovative operations concepts and data processing schemes for NPOESS services. NPP world-wide users will already experience NPOESS-like data well in advance of the first NPOESS flight in 2013. The NPP broadcast services to the global user community are: 21) 22) 23) 24)

• X-band downlink at 30 Mbit/s

• Convolutional coding

• QPSK (Quadra-Phase Shift Keying) modulation

• An X-band acquisition system of 2.4 m diameter aperture is sufficient for all data reception. NASA will provide:

• Real-Time Software Telemetry Processing System

• Ground-Based Attitude Determination module

• Stand-alone Instrument Level-1 and select Level-2 (EDR) algorithms

• Instrument-specific Level 1 (SDR) & select Level-2 (EDR) visualization & data formatting tools


Figure 7: The field terminal architecture of the NPP / NPOESS satellites (image credit: NASA, NOAA, IPO)

The DRL (Direct Readout Laboratory) of NASA/GSFC is committed to promote continuity and compatibility among evolving EOS direct broadcast satellite downlink configurations and direct readout acquisition and processing systems. The DRL bridges the EOS missions with the global direct readout community by establishing a clear path and foundation for the continued use of NASA’s Earth science DB data. The DRL is also involved in continued efforts to ensure smooth transitions of the Direct Broadcast infrastructure from the EOS mission to the next generation NPP (NPOESS Preparatory Project) and NPOESS (National Polar-orbiting Operational Environmental Satellite System) missions in 17171717the future. In an effort to foster global data exchange and to promote scientific collaboration, the DRL with support from other groups, is providing the user community access to Earth remote sensing data technologies and tools that enable the DB community to receive, process, and analyze direct readout data.

DRL developed IPOPP (International Polar Orbiter Processing Package), the primary processing package that will enable the Direct Readout community to process, visualize, and evaluate NPP and NPOESS sensor and EDRs (Environmental Data Records), which is a necessity for the Direct Readout community during the transition from the Earth Observing System (EOS) era to the NPOESS era. DRL developed also the NISGS (NPP In-Situ Ground System). The IPOPP will be: 25)

• Freely available

• Portable to Linux x86 platforms

• Efficient to run on modest hardware

• Simple to install and easy to use

• Able to ingest and process Direct Broadcast overpasses of arbitrary size

• Able to produce core and regional value-added EDR products.


High Data Rate

Low Data Rate

Carrier frequency:

7812 MHz NPP

1707 MHz

Max occupied bandwidth: NPP
Max occupied bandwidth: NPOESS

30 MHz NPP
30.8 MHz

12.0 MHz

Channel data rate: (includes all CCSDS overhead, Reed-Solomon forward error correction, and convolutional encoding)

30 Mbit/s NPP
40 Mbit/s NPOESS

7.76 Mbit/s

Ground antenna aperture size

2-3 m

1 m

Minimum elevation angle

VIIRS compression

Lossless – RICE

Lossy – JPEG2000

Table 4: NPP & NPOESS Direct Readout link characteristics

Mission status:

• February 22, 2017: Yet another series of atmospheric rivers has drenched California and the American West in a stunning turnaround from five years of drought. Many parts of California have received nearly twice as much rain as normally falls in the first five months of a water year, which began on October 1. 26)

- Flood and landslide warnings are in effect in many counties, particularly in the Sacramento Valley, which is crossed by several rivers and sits downstream from several large reservoirs and dams. According to news reports, more than two dozen mud/debris flows have been reported across California, and at least 30 major roads have been flooded at various times in the past week. Spillways have been opened at the Anderson, Oroville, and Monticello dams, among others.

- The map of Figure 9 shows satellite-based measurements of rain, snow, and other wintry precipitation as it has accumulated over California, Nevada, Utah, and Arizona this year. Specifically, it adds the daily precipitation totals from December 31, 2016, to the evening of February 20, 2017. These are remotely-sensed estimates, and local amounts can be significantly higher when measured from the ground. The brightest areas on the map depict as much as 1000 mm of precipitation.

- More than 12 cm of rain fell in parts of northern California and along the western foothills of the Sierra Nevada on February 19–20. Daily rainfall records for February 20 were doubled in San Jose (4.75 cm) and San Francisco (5.5 cm ). According to Colorado State University meteorologist Phil Klotzbach and National Weather Service sources, San Francisco has received 41.6 cm of rain since January 1, while Oakland has received 52.85 cm; the typical yearly total is 58 cm.

- During an atmospheric river event in southern California on February 17–18, new rainfall records were set in Death Valley (1.65 cm) and Santa Barbara (10.6 cm). More than 100,000 people lost power in the Los Angeles Metropolitan area on February 17 due to the storms.

- Las Vegas Valley set a new record rainfall on February 18, measuring 1.1 cm that day. Locations on the west side of the valley received double that amount. Meanwhile, in northern Nevada, Mount Rose has been buried under 12.7 m of snow this winter. The Mount Rose Highway between Reno and Lake Tahoe has been closed by an avalanche that dropped 6 m of snow on the road.


Figure 8: VIIRS on Suomi-NPP captured a natural-color image of conditions over the northeastern Pacific. Note the tight arc of clouds stretching from Hawaii to California, a visible manifestation of the atmospheric river pouring moisture into western states (image credit: NASA Earth Observatory, images by Jesse Allen and Joshua Stevens using VIIRS data)


Figure 9: Precipitation accumulated over the western states in 2017. The data come from IMERG (Integrated Multi-Satellite Retrievals for GPM), a product of the Global Precipitation Measurement mission (image credit: NASA Earth Observatory, images by Jesse Allen and Joshua Stevens using IMERG data of GPM)

• February 14, 2017: After extreme drought and water shortages plagued California for years, a series of winter storms pushed reservoirs in the Sacramento Valley to the brim in January and February 2017. Rivers and reservoirs are swollen throughout California. VIIRS on Suomi-NPP captured the image of Figure 10 on Feb. 11, 2017. 27)

- For comparison, the image of Figure 11 shows the same area on November 9, 2016, before the wet weather arrived. Large amounts of water have pooled in the Yolo Bypass, a water storage area designed to minimize flooding in Sacramento. Sediment stirred up during the flooding has turned waterways throughout northern California—including San Pablo Bay and Suisun Bay—a dark shade of brown.

- With weather stations in the northern Sierra Nevada recording remarkably high levels of precipitation for the 2016-2017 water year, reservoir levels are well above the historical average in the Sacramento Valley and elsewhere in California. As of February 11, 2017, Lake Oroville stood at 151% of the historical average. Folsom Lake was at 144%, Lake Shasta was at 138%, Don Pedro Reservoir was at 141%, and Lake McClure was at 182%.

- At the Oroville Dam, the situation became dire on February 7, 2017, when a large hole appeared in the main concrete spillway, a part of the dam managers use to release excess water in a controlled fashion. The hole limited how much water authorities could safely release through the spillway, so water levels in the reservoir continued to rise. A few days later, water began flowing over an emergency spillway that has never before been used. When the emergency spillway began showing worrisome signs of erosion on February 12, authorities ordered the evacuation of 188,000 people living downstream.

- Lake Oroville’s levels have declined since the evacuation order and the risk of a catastrophic failure has lessened. But reservoir managers remain concerned that rain showers forecast for this week could elevate reservoir water levels and stress the spillways again. As of 11 a.m. on February 13, the evacuation order remained in effect.


Figure 10: VIIRS on Suomi-NPP captured this natural-color image of sediment-filled waterways in the Sacramento Valley on February 11, 2017 (image credit: NASA Earth Observatory, image by Jesse Allen, caption by Adam Voiland)


Figure 11: For comparison, VIIRS on Suomi-NPP captured this natural-color image on Nov. 9, 2016, before the wet weather arrived (image credit: NASA Earth Observatory, image by Jesse Allen, caption by Adam Voiland)

• February 13, 2017: NASA has awarded the SNPPS (Suomi National Polar-Orbiting Partnership Sustainability) contract to BATC (Ball Aerospace and Technology Corp.) of Boulder, Colorado. This is an indefinite-delivery/indefinite quantity, cost-plus fixed-fee contract with the ability to issue task orders. Under this contract, Ball Aerospace will continue to provide sustaining engineering services to the JPSS (Joint Polar Satellite System) Flight Project and NOAA’s Office of Satellite and Product Operations for the mission operations systems and subsystems, and deactivation of the Suomi NPP satellite. This effort will maintain the current operational phase of the satellite through the Suomi NPP mission life, including deactivation and contract closeout. 28)

- Suomi NPP provides continuity for NASA’s EOS (Earth Observing System) and is a bridge between NOAA’s legacy POES (Polar Orbiting Environmental Satellite) missions and the JPSS-1 (Joint Polar Satellite System-1) satellite, under development and integration at BATC. Its sensor complement has surpassed expectations for low noise and accuracy, and has provided useful data to forecasters beginning well before it gained operational status. The NWS (National Weather Service) uses Suomi NPP global measurements in its numerical weather prediction models. NPP’s advanced imagery of clouds, ocean surface, land features and other physical parameters is key data for civilian and DoD forecasters. Suomi NPP’s precise observations are improving the accuracy of global forecasts three to seven days in advance of significant weather events, including hurricanes and winter storms. 29)

• January 12, 2017: Starting from 14 :18 UTC on January 12, 2017, the Suomi NPP VIIRS Day/Night Band began to be produced operationally using the NOAA STAR (Satellite Applications and Research) Center delivered calibration parameters based on onboard and pitch maneuver data, which were previously delivered by external partners based on dark ocean special collect data. STAR has improved the calibration which will result in better radiometric quality especially for low radiances. With the new calibration, users should expect to see a significant reduction of erroneous negative radiances especially during new moon. 30)

• December 7, 2016: Many parts of eastern China were put on orange alert on December 4, 2016, when heavy smog veiled large swaths of the country. The haze stranded passengers at airports in northern China and slowed down city life in Beijing, which reached orange alert level on December 1. 31)

- An orange alert signals heavy pollution—a PM2.5 (particulate matter) density of more than 150 micrograms per cubic meter of air—for three consecutive days. Such high concentration of fine particles in the air can cause lung and heart problems for vulnerable individuals, including asthmatics, children, and the elderly.

- Low winter temperatures exasperate smog since they cause temperature inversions. Warm air settles atop a layer of cooler, denser, smog-ridden air, trapping it like a lid. High concentrations of smog frequently appear in cities like Beijing during winter.


Figure 12: VIIRS on the Suomi-NPP satellite acquired this natural-color image of northeastern China on December 6. Photos taken from the ground also showed low visibility—less than 200 m, according to news reports. On December 5, People’s Daily reported smog blanketing more than 60 Chinese cities (image credit: NASA Earth Observatory, image by Jeff Schmaltz)

• November 5, 2016: The Indian state of Punjab is known as India’s breadbasket. Despite its relatively small size, Punjab ranks among the nation’s top wheat and rice producers. For a few weeks in October and November, Punjab also becomes a major producer of air pollution. 32)

- Punjab has two growing seasons and two main crops. Rice is planted in May and grown through September; wheat is planted in November and grown through April. Since rice leaves behind a significant amount of plant debris after harvest, many farmers burn the leftover debris in October and November to quickly prepare their fields for the wheat crop.

- In early October 2016, Earth-observing satellites began to detect small fires in Punjab, and the number of fires increased rapidly in the following weeks. By November, thousands of fires burned across the state, and a thick pall of smoke hovered over India. VIIRS (Visible Infrared Imaging Radiometer Suite) on the Suomi-NPP satellite captured a natural color image on November 2, 2016 (Figure 13). The map of Figure 14 shows the locations of the fires VIIRS also detected.

- Since the fires are small, short-lived, and burn at relatively low-temperatures, the smoke generally stays near the surface. On November 2, winds carried a stream of smoke — likely mixed with small particles of soil, dust, and partially burned plant material — toward New Delhi. The smoke from Punjab combined with urban pollution from vehicles, industry, and fireworks to push levels of particulate matter in the capital city to unusually high levels.


Figure 13: Thick smoke over northern India and Pakistan created by the fires of plant debris after the rice harvest. The image was acquired on Nov. 2, 2016 by the VIIRS instrument on Suomi-NPP (image credit: NASA Earth Observatory, image by Joshua Stevens)


Figure 14: The fire locations detected by the thermal bands of VIIRS on Suomi-NPP (image credit: NASA Earth Observatory, image by Joshua Stevens)

• October 28, 2016: After five years in space, the NOAA/NASA Suomi-NPP mission continues to contribute significant advances in severe weather prediction and environmental monitoring leading to better forecasts and situational awareness for the nation and users worldwide. Suomi-NPP is a bridge to NOAA's next generation JPSS (Joint Polar Satellite System) weather satellites. The JPSS-1 satellite is scheduled to launch in 2017 to complement the data from Suomi-NPP. 33)

Currently NOAA’s primary polar-orbiting weather satellite, Suomi-NPP, provides critical input into weather forecasts beyond 48 hours and is increasing the consistency and accuracy of forecasts three to seven days in advance of a severe weather event for NOAA’s National Weather Service. These data are also provided to other federal, state and local users; commercial weather sector; and international partners.

Research scientists throughout the United States and the world use Suomi-NPP data as they study severe weather, atmospheric and oceanographic phenomena and climate. Data produced by Suomi-NPP are derived from a new generation of instruments that will also fly on future JPSS satellites: Visible Infrared Imaging Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Technology Microwave Sounder (ATMS), and Ozone Mapping and Profiler Suite-Nadir (OMPS). Suomi NPP provides the first mission using these instruments, and also flies the fifth flight model of the Cloud and Earth Radiant Energy System (CERES).

Suomi NPP data are used to generate dozens of environmental data products, including measurements of atmosphere, oceans and land conditions. These include:

- Atmospheric temperature/moisture profiles

- Clouds

- Thunderstorms, tornado potential

- Ice detection

- Precipitation and floods

- Dense fog

- Volcanic ash

- Fire and smoke

- Sea surface temperature, ocean color

- Sea ice extent and snow cover /depth

- Polar satellite derived winds (speed/direction/height

- Vegetation greenness indices and health

- Ozone

- Oil spills.

It takes Suomi-NPP 14 orbits to observe the entire Earth in one day. The weather and environmental mission data from its five instruments for each orbit are stored and transmitted to Earth every orbit.

Suomi-NPP stored mission data is collected by a ground station in Svalbard, Norway, and is then routed to the NOAA Satellite Operations Facility in Suitland, Maryland, where it is processed and distributed. With JPSS-1, there will also be a transmission to antennas at McMurdo Station, Antarctica near the South Pole to enable data to be received and routed every half orbit, cutting the time processed data is sent to users by half. — In addition, Suomi NPP data are accessed by users through the use of direct broadcast antennas to quickly access Suomi NPP observations made while in view of each direct broadcast antenna to support critical missions (Ref. 33).

• In August 2016, tourists on a luxury cruise departed Seward Alaska and steered toward the waterways of the Canadian Arctic Archipelago. The excursion is one example of the growing human presence in an increasingly ice-free Northwest Passage — the famed high-latitude sea route that connects the northern Atlantic and Pacific oceans. In mid-August 2016, the southern route through the Passage was nearly ice-free. 34) 35)

- For most of the year, the Northwest Passage is frozen and impassible. But during the summer months, the ice melts and breaks up to varying degrees. The VIIRS (Visible Infrared Imaging Radiometer Suite) on the Suomi -NPP satellite captured the image of Figure 15 of the Northwest Passage on August 9, 2016. A path of open water can be traced along most of the distance from the Amundsen Gulf to Baffin Bay.

- “It was a warm winter and spring,” said NASA sea ice scientist Walt Meier. That means that the seasonal ice—ice that grew since the end of last summer, and the type found throughout most of the Passage—is thinner than normal. Thinner ice can melt more easily, break up, and move out of the channels. A scattering of broken ice is visible just east of Victoria Island. “It looks pretty thin and disintegrating,” Meier said. “I think an ice-strengthened ship could get through without too much trouble.”

- The open water this year flows along the southern route, or “Amundsen route.” It’s not unusual for the southern route to open up to some degree, as it is more protected than the northern route and receives less sea ice directly from the Arctic Ocean.


Figure 15: The VIIRS instrument on Suomi-NPP captured this image of the nearly ice-free Northwest Passage on August 9, 2016 (image credit: NASA Earth Observatory , Jeff Schmaltz)

• June 25, 2016: There’s more than one way to feed a phytoplankton bloom in the Gulf of Alaska (Figure 16). Iron, a key nutrient for the growth of these tiny plant-like organisms, can enter the gulf waters from the air—via volcanic eruptions or airborne dust from dry lakebeds and streams. Other times, the nutrient stays closer to the ground, catching a ride to the gulf with the meltwater of thawing glaciers. 36)

- NASA scientists noted that this is the time of year when melt water from Alaska’s glaciers flows through rivers and out into the Gulf of Alaska. The meltwater carries a supply of “rock flour,” or “glacial flour”—the dusty remains of bedrock ground up by a glacier. Where it reaches the Gulf of Alaska, this rock flour imparts a milky turquoise color to the water.

- The rock flour also supplies the gulf with the iron, a nutrient that promotes phytoplankton growth by helping the organisms to process nitrate. Eddies such as the ones visible in this image help distribute the iron offshore, where it mixes with nitrate-rich waters. As a result, conditions are just right for an offshore bloom of phytoplankton. The bloom is visible here as swirls of green.

- Runoff is highest from June through September. By fall, iron still makes its way into Gulf of Alaska, but it takes a different path. Low river levels in the fall mean that more riverbed sediments are exposed to winds. Winds can loft huge plumes of riverbed dust into the air, some of which settles back down on gulf waters and fertilizes blooms.


Figure 16: The VIIRS instrument on Suomi-NPP captured this image of the Gulf of Alaska on June 9, 2016 (image credit: NASA Earth Observatory, image by Norman Kuring)

• June 15, 2016: The Suomi NPP satellite collected this natural-color image with the VIIRS (Visible Infrared Imaging Radiometer Suite) instrument which detected hundreds of fires burning in Central Africa on June 13, 2016 (Figure 17). Actively burning areas, detected by MODIS’s thermal bands, are outlined in red. Each hot spot is an area where the thermal detectors recognized temperatures higher than background. The location, widespread nature, and number of fires suggest that these fires were deliberately set to manage land. Farmers often use fire to return nutrients to the soil and to clear the ground of unwanted plants. 37)


Figure 17: Fires in Central Africa acquired with VIIRS on Suomi-NPP on June 13, 2016 (image credit: NASA, image of Jeff Schmaltz)

Light Pollution, June 10, 2016: The Milky Way, the brilliant river of stars that has dominated the night sky and human imaginations since time immemorial, is but a faded memory to one-third of humanity and 80 percent of Americans, according to a new global atlas of light pollution produced by Italian and American scientists. The atlas takes advantage of low-light imaging now available from the NOAA/NASA Suomi -NPP (National Polar-orbiting Partnership) satellite, calibrated by thousands of ground observations. 38) 39)

- Light pollution is one of the most pervasive forms of environmental alteration. In most developed countries, the ubiquitous presence of artificial lights creates a luminous fog that swamps the stars and constellations of the night sky. “We’ve got whole generations of people in the United States who have never seen the Milky Way,” said Chris Elvidge, a scientist with NOAA’s National Centers for Environmental Information. “It’s a big part of our connection to the cosmos — and it’s been lost.”

- Elvidge, along with Kimberly Baugh of NOAA’s Cooperative Institute for Research in Environmental Sciences, is part of a team that developed a global atlas of light pollution published in the journal Science Advances. Using high-resolution satellite data and precision sky brightness measurements, their study produced the most accurate assessment yet of the global impact of light pollution.

- Light pollution is most extensive in countries like Singapore, Italy and South Korea, while Canada and Australia retain the most dark sky. In Western Europe, only small areas of night sky remain relatively undiminished, mainly in Scotland, Sweden and Norway. Despite the vast open spaces of the American west, almost half of the U.S. experiences light-polluted nights.

- “In the U.S., some of our national parks are just about the last refuge of darkness – places like Yellowstone and the desert southwest,” said co-author Dan Duriscoe of the National Park Service. “We’re lucky to have a lot of public land that provides a buffer from large cities.”

- Light pollution does more than rob humans of the opportunity to ponder the night sky. Unnatural light can confuse or expose wildlife 40) like insects, birds and sea turtles 41), often with fatal consequences.

• May 2016: Preparation for Emergency Conjunction Avoidance Maneuvers for the Suomi-NPP mission. In January 2014, the Suomi-NPP MOT (Mission Operations Team) responded to several close approaches. The MOT started RMM (Risk Mitigation Maneuver) planning for four threats during this period. Three of these events did not lead to an executed RMM due to dissipated threat levels from new tracking data. At the moment when these events were cancelled, the MOT had completed most of the steps needed to make an RMM ready for execution. 42)

- Preparation for an RMM demands a significant resource and time allocation from the Suomi-NPP MOT, which requires significant lead times and limits the MOT's ability respond to several close approaches simultaneously. Suomi-NPP operates at an altitude of approximately 824 km which is identified to be a dense and potentially hazardous debris environment. Due to this dense environment, the MOT experiences frequent close approach events. It was soon realized that the MOT needed improved tools and processes to optimize RMM planning and reduce response times to close approach events. Reducing response times is necessary as better detection capabilities in the near future are expected to increase the number of predicted close approaches.

- The MOT typically executes an RMM twelve to twenty four hours before the TCA (Time of Closest Approach) to minimize the size of the avoidance maneuver. The current method takes approximately twenty hours or two business days of preparation prior to executing the maneuver, requiring the RMM process to be started approximately seventy-two hours before TCA. Additional tracking is required to reduce uncertainties in the position of the approaching object, which is taking place during the period that the MOT is preparing the maneuver. The largest step in the process is the creation, validation, and testing of the DAS (Detailed Activity Schedule) command load containing the commands to execute an RMM. This step requires roughly ten to twelve hours of time to accomplish and required each burn time and duration to be tested using an aging simulator.

- Creating a method of executing an RMM using pre-verified maneuver sequences stored on the spacecraft will remove this ten- to twelve-hour step from the process, allowing more time for uncertainties to reduce prior to responding, and will remove the dependency on a single point of failure simulator and mission planning system resources.

- The OSMS (Onboard Stored Maneuver Sequence) system uses a set of on-board CBM (Command Block Memory) sequences, a sequence of relative time commands, and a set of ground system scripts to command an RMM without the need for a DAS. This system was put through a period of ground testing and on-orbit testing and integration. Once declared operational, this system will significantly improve how much time is needed to execute an RMM.

- The OSMS system consists of components for the spacecraft and ground system. The spacecraft portions of the system are a series of CBM sequences containing all instructions for executing an RMM. The ground components of the system are comprised of ground scripts that will configure and execute the on-orbit CBM sequences.

- The on-orbit CBM is made up of four sequences. Two sequences consist of maneuver commands for the spacecraft, each covering one of the two delta-V modes. The two other sequences contain the commands to prepare the CERES (Clouds and the Earths Radiant Energy Systems) and OMPS instruments for a maneuver and return both instruments to science mode following the RMM. Each maneuver sequence has two sections. The first section is a series of configurable slots that the ground scripts will populate with time delays appropriate for placing the delta-v burn of the RMM at the desired time. The second section contains the maneuver sequence. In the maneuver sequence, there are three empty slots that are populated by the ground scripts. The first two slots are reserved for CBM execution commands for the CERES and OMPS sequences. The third slot is reserved for the delta-v burn command and is populated with the appropriate command and desired magnitude for the burn.

- The ground portion of the system consists of two scripts. The first script will ask the user when the ΔV burn of the RMM should be scheduled, the duration of the burn in milliseconds, and whether CERES and OMPS should be configured for the maneuver. After taking into account the user inputs, it will:

1) Select the delta-v burn mode based on requested duration

2) Calculate the delay needed to place the burn as requested by the user

3) Insert the needed delays in the delay section of the maneuver CBM

4) Insert the CBM calls for the CERES and OMPS sequences

5) Insert the burn command with the appropriate magnitude based on selected burn duration

6) Execute the maneuver CBM sequence.

- The second script, the back out script, will clean up the maneuver CBM sequences and conduct a check to confirm the on-orbit CBM is in its pre-maneuver configuration.

Before the OSMS system could be declared operational, a series of tests had to be performed. The MOT developed a set of ground and on-orbit tests to validate OSMS.

Ground Test Results: All post-test artifacts from the ground test sets were reviewed by the MOT. Analysis of the simulator command logs confirmed that all OSMS CBM sequences executed in their proper order and at the requested times. All burn options were proven valid after comparing test results with predicted results. Command logs and ground system logs confirmed that the setup and back out scripts performed as desired. After reviewing results, it was concluded that all OSMS components were ready to be deployed to the operational ground system and uplinked to the spacecraft.

On-Orbit Test Results: At the time of paper submission, the no-burn and open-loop mode tests have been successfully performed. The no-burn test was performed on November 18, 2015. The no-burn test confirmed that the OSMS ground scripts would perform properly on the operational ground system and placed all commands within two seconds of their desired times. The open-loop test was performed on February 24, 2016, but due to ground track restrictions, the closed-loop test will not be performed for several months. During the open-loop test, OSMS performed DMU (Drag Makeup Maneuver) 22 and placed all commands within one second of their desired execution times. Despite the lack of closed-loop maneuver testing, the no-burn and open-loop test confirmed that the OSMS system can command an RMM without the need for the creation, validation, and testing of a DAS.

In summary, the results gathered so far show promise for the OSMS system. All time delays and burn options were validated, removing the need to simulate future maneuvers. The OSMS system can perform open-loop burn RMMs without the need for a DAS. Once the closed-loop test can be completed, the need for a DAS for RMM execution can be safely removed. Removing the need for creating, validating, and testing the DAS will eliminate ten to twelve hours of RMM preparation time and lower the total time to respond to an RMM from two days to less than one day. With a less than one-day response time, the MOT can delay the start of RMM preparations. The delay will allow time for additional tracking information to be received, reducing positional uncertainty in the approaching object and reducing the calculated risk of conjunction. Reduced risk of conjunction/collision often eliminates the need for executing the maneuver, saving the team the time and effort of a planning exercise for an event that is not executed.

• May 3, 2016: The Taklimakan (Taklamakan) desert in China is one of the driest, most barren expanses on Earth. Flanked by mountain ranges on three sides and parched by the resulting rain shadow, parts of the Tarim Basin receive no more than 10 mm of rain per year. It is no surprise that plant life is scarce. With little vegetation to hold sand in place, some 85% of the Taklimakan consists of shifting sand dunes. Only the dune fields of Saudi Arabia’s Rub’ al Khali cover a larger area. Taklimakan’s dunes can soar up 200 to 300 meters. With so much sand and so little vegetation or moisture, dust storms are a regular occurrence, particularly in the spring. 43)

- The Tarim Basin is bordered by the Kunlun Shan mountains to the south and the Tian Shan mountains to the north (the Tian Shan is covered with snow and partly obscured by clouds in this image of Figure 18) . The basin opens up on its eastern edge, but that is not generally a way out for dust. Prevailing low-altitude winds almost always blow from the east, keeping most dust below 5 km—about the height of the mountain ranges—and trapped within the basin. In spring, strong surface winds can sometimes lift dust up to 10 km. These particles can then be transported by higher-altitude winds that send them across China and the Pacific. In this case, however, the dust appears to be relatively low in the atmosphere.


Figure 18: On May 1, 2016, the VIIRS (Visible Infrared Imaging Radiometer Suite) on the Suomi NPP satellite captured this natural-color image of northeasterly winds pushing a wall of dust southwest across the Tarim Basin (image credit: NASA Earth Observatory, image by Jeff Schmaltz)

• On March 6, 2016, news and social media was buzzing with spectacular photographs of the northern lights (aurora borealis) painting skies across the United Kingdom with brilliant shades of green and pink. — The event was impressive from above as well. Using the DNB (Day-Night Band ) of VIIRS (Visible Infrared Imaging Radiometer Suite), the Suomi NPP satellite acquired this view of the aurora borealis on March 7, 2016. Auroras appear as white streaks over Iceland, the North Atlantic, and Norway. The DNB sensor detects dim light signals such as airglow, gas flares, city lights, and reflected moonlight. In the image of Figure 19, the sensor detected the visible light emissions that occur when energetic particles rain down from Earth’s magnetosphere into the gases of the upper atmosphere. 44)

- It is not often that the northern lights are visible south of Scotland and Northern Ireland, but a geomagnetic storm colored night skies over a much wider swath of the country. The storm reached a G3 or “severe” level on NOAA’s geomagnetic storm scale, according to the Space Weather Prediction Center. On March 7, the Kp index—a metric for global geomagnetic storm activity—rose as high as 7 on a scale that goes to 9.

- The brilliant colors of the aurora are provoked by activity the Sun: Solar energy and particles speed toward Earth in a steady stream called the solar wind, or they rush out in massive eruptions known as CMEs (Coronal Mass Ejections). These storms from the Sun disturb geospace (the space around Earth) and energize particles already trapped in the magnetosphere and radiation belts. Electrons then race down Earth’s magnetic field lines and crash into the gases at high altitudes of the atmosphere. Oxygen gives off a green color when excited; nitrogen produces blue or red colors.


Figure 19: The VIIRS instrument of Suomi-NPP acquired this image of the aurora borealis on March 7, 2016 (image credit: NASA Earth Observatory , Adam Volland)

• January 27, 2016: It’s wintertime in the Northern Hemisphere, which means spectacular phytoplankton blooms return to the Arabian Sea. Blooms show up this time of year in the Arabian Sea because of the winter monsoon. Winds shift from southwesterly to northeasterly, stirring up currents that bring nutrients up from the depths and out from coastal tributaries. The change in wind direction also picks up dust from the arid lands of southwestern Asia, carrying it out over the sea. This dust contains mineral nutrients that phytoplankton need to fuel their growth. 45)

- Dust storms help fertilize the ocean. They move nitrate, phosphate, and iron from the land into ocean surface waters around the world. Research published in October 2014 found that winter blooms in the Arabian Sea could occasionally be attributed to the nutrients received from dust storms like this one.


Figure 20: VIIRS on Suomi-NPP acquired on Dec. 21, 2015 this image of a phytoplankton bloom off the coast of Oman (left), Pakistan (center), and India (right), image credit: NASA Earth Observatory, Norman Kuring

Legend to Figure 20: The image was composed with data from the red, green, and blue bands from VIIRS, in addition to chlorophyll data. A series of image-processing steps were then applied to highlight color differences and bring out the bloom’s more subtle features.

• Dec. 1, 2015: The composite visible image of Figure 21 shows a thick line of agricultural fires stretching from west to east across Central Africa. Visible-light images were taken from the VIIRS instrument aboard the Suomi NPP satellite on Nov. 27, 2015 at 12:50 UTC. The VIIRS image showed the heat signatures from fires (in red) from Burkina Faso and northern Ghana, Togo and Benin stretch eastward across southern Nigeria, Chad and Sudan, Cameroon, Central Africa Republic, South Sudan and Ethiopia. 46)


Figure 21: A line of fires seen by the VIIRS instrument on the Suomi-NPP satellite on Nov. 27, 2015 (image credit: NASA/GSFC, Jeff Schmaltz)

• On October 28, 2015, the joint NOAA/NASA Suomi-NPP mission is 4 years on orbit providing successful observations. The mission was declared the primary satellite for weather in May of 2014. — As of August 31, 2015, Suomi-NPP has orbited the Earth 19,900 times, and provided 4.9 PB of data archived in the NOAA CLASS (Comprehensive Large Array-data Stewardship System) archive. This data provides weather and environmental data for a wide variety of forecasting, monitoring and assessment needs. The Suomi-NPP ATMS data were operationally assimilated by the NOAA Centers for Environmental Prediction within 7 months of the Suomi-NPP launch, three times faster than any prior POES (Polar-orbiting Operational Environmental Satellite) microwave sounder. CrIS was operationally assimilated within 13 months, also setting a new record for infrared sounder assimilation. CrIS would have been assimilated within 9 months; however, the operational assimilation was delayed by supercomputer upgrades and hurricane season freezes which delayed changes in the assimilation system. Suomi-NPP data can be obtained without any restrictions from: 47)

- The Suomi-NPP satellite has been working very well. There are a few anomalies that recur, however these do not significantly impact operations or data availability. The program is closely monitored for system health. In addition, the program has established a longevity plan to guide risk mitigation efforts to realize the maximum life possible. One mitigation measure has been implemented into operations on the ATMS instrument.

- Data availability has been outstanding, as shown in Figure 22, even though the initial version of the ground segment is aged and has relatively limited capabilities. This performance is a strong testament to the efforts of the JPSS (Joint Polar Satellite System) ground project team.


Figure 22: Suomi-NPP mission data availability summary (image credit: NOAA)

- When Suomi-NPP was launched, CrIS was operated in a reduced spectrum mode because in the early phase of NPOESS the success of carbon monoxide and other trace gas products from similar precursor instruments, such as NASA’s AIRS (Atmospheric InfraRed Sounder ) were unknown. Both were also operated at the lower data rate because there concerns about margin in the on-board data bus. - Following on-orbit and ground test activities, CrIS full spectrum capability was implemented in December 2014, and OMPS full data rate has been prepared for implementation in 2016.

- Another major operational improvement for users has been the demonstration of direct readout. NOAA was provided additional funding following the super-storm Sandy (hurricane Sandy was he deadliest and most destructive hurricane of the 2012 Atlantic hurricane season) to make several investments that will provide mitigation of impacts in the event of a gap in afternoon polar weather satellite observations. One of the investments has been to upgrade NOAA direct readout terminals to handle the X-band feed from Suomi-NPP and the subsequent JPSS missions as well all of the heritage POES and EUMETSAT sounder data. The purpose of this is to provide an alternative avenue to retrieve data with very low latency to feed to the Numerical Weather Program.

• August 21, 2015: In the summer of 2015, wildfires raged across the western United States and Alaska. Many of those fires burned in the U.S. Northwest, visible in Figure 23 from late August, 2015. According to the Northwest Interagency Coordination Center, the Okanogan Complex Fire in Washington was among the larger active fires; as of August 20, the fire had burned 91,314 acres (370 km2). In Oregon, the Canyon Creek Complex Fire had burned 48,201 acres (195 km2), destroyed 26 residences and threatened another 500. Both fires were less than 40 percent contained. Meanwhile, firefighters have made progress on the large, damaging Cornet-Windy Ridge Fire in Oregon, which as of August 20 was 70 percent contained. 48)


Figure 23: This image was acquired in the early morning local time on August 19, 2015 with the VIIRS (Visible Infrared Imaging Radiometer Suite) sensor on the Suomi NPP satellite. The image was made possible by the instrument’s “day-night band,” which uses filtering techniques to observe dim signals including those from wildfires. Labels point to the large, actively burning fires in the region (image credit: NASA)

• Aug. 6, 2015: The NOAA/NASA Suomi NPP satellite passed over powerful Typhoon Soudelor when it was headed toward Taiwan. The VIIRS instrument aboard Suomi NPP captured an infrared image of the typhoon. The infrared image showed some thunderstorms within the typhoon with very cold cloud top temperatures, colder than -53ºC. Temperatures that cold stretch high into the troposphere and are capable of generating heavy rain.


Figure 24: VIIRS image of Typhoon Soudelor, acquired on August 7 (UTC), 2015 when it was headed toward Taiwan (image credit: UWM/CIMSS/SSEC, William Straka III)

• May 26, 2015: Physical oceanographers will sometimes point out that the ocean has weather and seasons, much like the atmosphere. Masses of water with different temperatures, salinities, and nutrient levels clash and mix like warm and cold fronts in the air. Different plant-like species—phytoplankton—bloom, spread, and die back with the different conditions. Ocean currents swirl in turbulent fronts and eddies—much like tornadoes and hurricanes, though far more productive than destructive.

- Springtime in the North Atlantic Ocean is a time of great change, turbulence, and productivity. Increasing sunlight, nutrient runoff from land and upwelling from the deep, and changeable atmospheric weather all conspire to color the ocean surface with interesting patterns. The composite image (Figure 25) shows the northwest Atlantic Ocean on May 14, 2015, with the New England and Canadian Maritimes in the background. The image was constructed from data acquired by VIIRS (Visible Infrared Imaging Radiometer Suite) sensor on the Suomi NPP satellite. Colors were enhanced to make the blooms more visible. 49)


Figure 25: Composite image of the VIIRS instrument of the northwest Atlantic Ocean, acquired on May 14, 2015 (image credit: NASA Earth Observatory, Norman Kuring)

Legend to Figure 25: On the left side of the image, several circular patterns are traced out by the light green phytoplankton near the surface. These rings are likely eddies that have spun off of the Gulf Stream, which turns east toward Europe in this region. The underwater plateau known as George's Bank is also made visible (indirectly) by the plankton. The Labrador Current and the Gulf Stream meet in this area, and the relatively shallow water promotes an abundant crop of phytoplankton, marine plants, shellfish, finfish, and marine mammals, all the way up the food chain. The bank is marked by bright swirls of color in the image.

Patches and swirls of phytoplankton continue to the north and east from the bank, indicating regions where there are significant nutrients near the surface and other water conditions that promote blooms. Though it is very difficult to identify the genus and species of phytoplankton from a satellite, researchers working from ships in the North Atlantic confirmed that at least some of the phytoplankton blooming in May were diatoms, including Guinardia delicatula.

The Gulf of Maine and George's Bank have historically been some of the most productive fishing grounds on the planet. Overfishing and pollution brought significant declines in the late 20th century, though regulation and changes in fishing practices may now restore some of the abundance in the local waters. Researchers from the Woods Hole Oceanographic Institution, North Carolina State University, and NOAA have been regularly monitoring the region with ship-based studies, ocean models, and automated, moored instruments in order to keep track of phytoplankton and algae species, particularly those that lead to toxic algae blooms.

• Feb. 25, 2014: In late February 2015, a significant winter storm stirred up dust and sand across much of the Arabian Peninsula. The low-pressure system energized strong northwest winds that carried dust from as far as northern Saudi Arabia, Iraq, and Kuwait to the shores of the Persian Gulf and the Arabian Sea. 50)

- The VIIRS ( Visible Infrared Imaging Radiometer Suite) on the Suomi NPP satellite captured these images of the sand storm on February 23 and 24. Because of the desert landscape and the widespread nature of the event, the airborne particles are easier to see over open water (Figure 26).

- Sand storms are common in the region at this time of year, though this one seems particularly potent and long-lasting—five days so far. Poor visibility has been the biggest danger, causing hundreds of automobile accidents across Oman, Saudi Arabia, and the UAE (United Arab Emirates). Visibility dropped as low as 500 m at Al Maktoum International Airport in Dubai.

- The weather system brought rain and snow to several locations, and rough seas along the coast. Temperatures in Muscat, Oman, dropped from 38ºC on February 20 to 20°C on February 24. The city of Dubai (UAE) deployed thousands of workers to clear dust and debris from the streets. News reports said more than 21 tons of sand had been cleared from the city alone. Government authorities in several countries warned people to stay inside as much as possible and to cover their noses and mouths when walking outside. The storms are a particular danger to people with asthma and other respiratory diseases.


Figure 26: VIIRS image of the persistent sand storm on the Southern Arabian Peninsula acquired on Feb. 24, 2015 (image credit: NASA Earth Observatory, Jesse Allen)

Debris avoidance maneuver for Suomi-NPP: — The Suomi-NPP mission team monitored a possible close approach of a debris object on Sept. 28, 2014. The risk was assessed to be high enough to start planning a spacecraft maneuver to put the satellite into a safer zone, out of the path of the object classified in a size range of 10 cm up to 1 m. 51)

- It was determined that the object (travelling at almost 27,400 km/h) was approaching at a nearly "head on" angle, and could potentially only miss the Suomi-NPP satellite by approximately 100 m on Sept. 30, if no action was taken. With that knowledge, the decision was made on Sept. 29, for NSOF (NOAA's Satellite Operations Facility) in Suitland, Maryland, to reposition Suomi-NPP. Operational control as well as planning and execution of all Suomi NPP maneuvers take place at NSOF.

- Since Suomi-NPP's launch in October 2011, this recent reposition was the fourth Risk Mitigation Maneuver to avoid space debris. In this case, the object was a section of a Thorad-Agena launch vehicle used between 1966 and1972 primarily for Corona U.S. reconnaissance satellites.

- A previous Suomi NPP risk mitigation maneuver in January 2014 avoided a discarded booster from a Delta 1 launch vehicle, a type of rocket made in the United States for a variety of space missions from 1960 to 1990. There is also a significant amount of debris in Suomi NPP's orbit from the Chinese Fengyun-1C, a meteorological satellite China destroyed in January 2007 in a test of an anti-satellite missile. Another threat near Suomi NPP's orbit is the debris resulting from a 2009 collision of a functioning commercial communications satellite and a defunct Russian satellite.

• Sept. 25, 2014: A joint NOAA/NASA satellite is one of several satellites providing valuable information to aviators about volcanic hazards. An aviation "orange" alert was posted on August 18, 2014, for Bárðarbunga, a stratovolcano located under the Vatnajökull glacier in Iceland, indicating the “volcano shows heightened or escalating unrest with increased potential of eruption.” 52)

Much of the information leading to that alert came from satellites including VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi NPP spacecraft. The VIIRS instrument is suited to detect the relatively unique spectral signature difference of volcanic clouds often absorb and reflect radiation as a function of wavelength in a manner that is very different from other cloud types.

• July 5, 2014: Large amounts of Saharan sand began to arrive in the Americas in June 2014. On June 23, a lengthy river of dust from western Africa began to push across the Atlantic Ocean on easterly winds. A week later, the influx of dust was affecting air quality as far away as the southeastern United States. The image of Figure 27 was released on July 5, 2014 in NASA's Earth Observatory series. 53)


Figure 27: The composite image, acquired with data from VIIRS on Suomi NPP, shows dust heading west toward South America and the Gulf of Mexico on June 25, 2014 (image credit: NASA Earth Observatory)

Legend to Figure 27: The dust flowed roughly parallel to a line of clouds in the intertropical convergence zone, an area near the equator where the trade winds come together and rain and clouds are common. Saharan dust has a range of impacts on ecosystems downwind. Each year, dust events like the one pictured here deliver about 40 million tons of dust from the Sahara to the Amazon River Basin. The minerals in the dust replenish nutrients in rainforest soils, which are continually depleted by drenching, tropical rains. Research focused on peat soils in the Everglades show that African dust has been arriving regularly in South Florida for thousands of years as well.

In some instances, the impacts are harmful. Infusion of Saharan dust, for instance, can have a negative impact on air quality in the Americas. And scientists have linked African dust to outbreaks of certain types of toxic algal blooms in the Gulf of Mexico and southern Florida.

• December 2013: NASA scientists have revealed the inner workings of the ozone hole that forms annually over Antarctica and found that declining chlorine in the stratosphere has not yet caused a recovery of the ozone hole. — More than 20 years after the Montreal Protocol agreement limited human emissions of ozone-depleting substances, satellites have monitored the area of the annual ozone hole and watched it essentially stabilize, ceasing to grow substantially larger. However, two new studies show that signs of recovery are not yet present, and that temperature and winds are still driving any annual changes in ozone hole size. 54)


Figure 28: The area of the ozone hole, such as in October 2013, is one way to view the ozone hole from year to year. However, the classic metrics have limitations (image credit: NASA, Ozone Hole Watch)

The 2012 ozone hole was the second-smallest hole since the mid 1980s. To find out what caused the hole's diminutive area, the researchers, Susan Strahan and Natalya Kramarova, turned to data from the NASA-NOAA Suomi National Polar-orbiting Partnership satellite, and gained a first look inside the hole with the satellite's OMPS (Ozone Mapping and Profiler Suite). Next, data were converted into a map that shows how the amount of ozone differed with altitude throughout the stratosphere in the center of the hole during the 2012 season, from September through November.

The map revealed that the 2012 ozone hole was more complex than previously thought. Increases of ozone at upper altitudes in early October, carried there by winds, occurred above the ozone destruction in the lower stratosphere.

The classic metrics create the impression that the ozone hole has improved as a result of the Montreal protocol. In reality, meteorology was responsible for the increased ozone and resulting smaller hole, as ozone-depleting substances that year were still elevated. The study has been submitted to the journal of Atmospheric Chemistry and Physics (Ref. 54).


Figure 29: A look inside the 2012 ozone hole with the Ozone Mapper and Profiler Suite shows how the build-up of ozone (parts per million by volume) in the middle stratosphere masks the ozone loss in the lower stratosphere (image credit: NASA)

• December 2013: Daytime measurements of reflected sunlight in the visible spectrum have been a staple of Earth-viewing radiometers since the advent of the environmental satellite platform. At night, these same optical-spectrum sensors have traditionally been limited to thermal infrared emission, which contains relatively poor information content for many important weather and climate parameters. These deficiencies have limited our ability to characterize the full diurnal behavior and processes of parameters relevant to improved monitoring, understanding and modeling of weather and climate processes. Visible-spectrum light information does exist during the nighttime hours, originating from a wide variety of sources, but its detection requires specialized technology. Such measurements have existed, in a limited way, on USA Department of Defense satellites, but the Suomi-NPP satellite, which carries a new Day/Night Band (DNB) radiometer, namely VIIRS, offers the first quantitative measurements of nocturnal visible and near-infrared light. 55)

- VIIRS includes a high-sensitivity DNB that is panchromatic (sensitive to all visible colors) and collects highly detailed imagery of the Arctic even under low light levels (Figure 30). VIIRS DNB imagery has vastly superior information content compared with emissive or thermal IR imagery collected at the same time under the very low thermal contrast conditions that occur frequently in the Arctic during winter (Figure 31). The imagery is enabling significant improvements in forecasting weather and sea ice changes. 56)


Figure 30: VIIRS image of of Alaska and the Chukchi and Beaufort Seas taken under moonlight. DNB provides high-contrast imagery even under the low thermal contrast conditions prevalent in the Arctic winter [image credit: NOAA/CIRA (NOAA/Cooperative Institute for Research in the Atmosphere)at Colorado State University)]


Figure 31: VIIRS imagery in the MI5 spectral band (left) and the DNB (right) of the western Chukchi Sea. Note how the sea ice structure and other surface detail so readily apparent in the DNB image is not visible at all in the thermal IR image (image credit: NOAA/CIRA)

• Aug. 2013: Tracking of the Chelyabinsk Meteor Plume. On Feb. 15, 2013, a meteor (or meteoroid) with a mass of ~ 10,000 tons exploded above the Russian city of Chelyabinsk. Travelling at a speed of ~18 km/s, the meteoroid quickly became a brilliant fireball as it passed over the southern Ural region, exploding in an air burst over Chelyabinsk. The atmosphere absorbed most of the released energy, which was equivalent to nearly 500 kilotons of TNT making it ~30 times more powerful than either of the atomic bombs detonated at Hiroshima and Nagasaki. About 1,500 people were injured, Over 4,300 buildings in six cities across the region were damaged by the explosion. 57)

- Some of the surviving pieces of the Chelyabinsk bolide (meteor) fell to the ground. But the explosion also deposited hundreds of tons of dust up in the stratosphere, allowing a NASA satellite to make unprecedented measurements of how the material formed a thin but cohesive and persistent stratospheric dust belt. 58) 59)

About 3.5 hours after the initial explosion, the OMPS (Ozone Mapping Profiling Suite) instrument’s limb profiler on the NASA/NOAA Suomi NPP spacecraft detected the plume high in the atmosphere at an altitude of about 40 km, quickly moving east at more than 300 km/h. The day after the explosion, the satellite detected the plume continuing its eastward flow in the jet stream and reaching the Aleutian Islands. Larger, heavier particles began to lose altitude and speed, while their smaller, lighter counterparts stayed aloft and retained speed – consistent with wind speed variations at the different altitudes.

By Feb. 19, 2013, four days after the explosion, the faster, higher portion of the plume had snaked its way entirely around the Northern Hemisphere and back to Chelyabinsk. But the plume’s evolution continued: At least three months later, a detectable belt of bolide dust persisted around the planet.

The scientists' model simulations, based on the initial Suomi NPP observations and knowledge about stratospheric circulation, confirmed the observed evolution of the plume, showing agreement in location and vertical structure.


Figure 32: Model and satellite data show that four days after the bolide explosion, the faster, higher portion of the plume (red) had snaked its way entirely around the northern hemisphere and back to Chelyabinsk, Russia (image credit: NASA/GSFC)

• July/August, 2013: Each year, hundreds of millions of tons of dust are picked up from the deserts of Africa and blown across the Atlantic Ocean (Figure 33). That dust helps build beaches in the Caribbean and fertilizes soils in the Amazon region. It affects air quality in North and South America. And some say dust storms might play a role in the suppression of hurricanes and the decline of coral reefs. 60)


Figure 33: Tracking dust across the Atlantic: the image was aquired by the VIIRS instrument on July 31, 2013 (image credit: NASA)

Legend to Figure 33: Dust from the Sahara Desert and other points in interior Africa were lofted into the sky in late July 2013. Figure 33 shows the general westerly and northwesterly progression of the airborne particles across the Atlantic Ocean. (Note that the milky lines running vertically across each image are caused by sunglint, the reflection of sunlight off the ocean directly back at the sensor.) Such an image helps to reveal wind patterns (trade winds) that steer plumes and clouds. At several points, dust stretched continuously from North Africa to South America.

The dust also was detected by the OMPS (Ozone Mapping Profiling Suite) on Suomi NPP. The maps of Figure 34 show the relative concentrations of aerosol particles on July 31 and August 1-2, 2013. While designed to measure ozone in the atmosphere, OMPS gathers ultraviolet spectral information that reveals the presence of smoke and airborne dust. Lower concentrations appear in yellow, and greater concentrations appear in orange-brown. Each map includes roughly six satellite passes. Note: sunglint also causes some vertical banding in these images.

Dust has long blown across the Atlantic from Africa, but only during the past several decades of satellite observations have meteorologists begun to appreciate the vast scale of these events. While estimates of the dust transported run to hundreds of millions of tons per year, humankind still knows relatively little about the effects on phytoplankton productivity, climate, and human health. 61)


Figure 34: The 3 images show the Saharan dust storm of the OMPS instrument acquired on July 21 to August 2, 2013 (image credit: NASA)

The VIIRS instrument acquires data in 16 spectral channels from visible to thermal infrared domains at moderate spatial resolution, i.e. spatial resolution of around 750 m at nadir. It scans around ±60° from nadir and provides daytime and nighttime imaging of any point on the Earth everyday. The LST (Land Surface Temperature) retrieval algorithm for VIIRS is based on a viewing angle dependent generalized split-window algorithm to correct for absorption and re-emission of radiation by atmospheric gases, predominately water vapor, and derive LST products from channels 15 (T15) and 16 (T16) centered on 10.8 and 12.0 µm, respectively.

An international team of experts evaluated the precision and accuracy of one year of VIIRS LST products (from March 2012 to March 2013) over SURFRAD (Surface Radiation Budget) networkvalidation sites in the U.S. The SURFRAD network mainly represents short vegetation covers: grassland, cropland and arid/desert areas. In parallel, a similar analysis was run for MODIS LST to be able to compare both VIIRS and MODIS algorithms performance.

The VIIRS LST validation team selected 51 validation sites worldwide to represent a large range of climate regimes and land cover types, including forests and mixed vegetated areas. The stations are part of operational networks, e.g. the SURFRAD (Surface Radiation Budget) network, the USCRN (U.S. Climate Reference Network), Figure 35, and Ameriflux, or are specifically designed for the validation of LST products derived from other satellite sensors: such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra, the MSG/SEVIRI (Spinning Enhanced Visible and Infrared Imager) on the Meteosat-8 spacecraft of EUMETSAT, and the AATSR (Advanced Along Track Scanning Radiometer) instrument on Envisat of ESA.

First results show that the VIIRS LST products verify the JPSS program quality requirements over most validation sites. The bias and precision specifications of LST products are 1.4 K and 2.5 K, respectively. At daytime, VIIRS and MODIS LST agree better with scaled-up field data than with non-scaled field observations over mixed vegetation areas. Nevertheless, observed biases between ground and satellite-based LST obtained over heterogeneous areas are strongly reduced when using nighttime data since effects of structural shading, evaporative cooling and surface-air temperature differences are smaller.

The first results clearly illustrate that validation of satellite LST products over heterogeneous landscapes should be performed at nighttime only if no scaling is accounted for. Ultimately, this validation approach should lead to an accurate and continuously-assessed VIIRS LST products suitable to support weather forecast, hydrological applications, or climate studies. Readily adaptable to other moderate resolution satellite systems, this work is part of the “EarthTemp Network” initiative whose main goal is to develop more integrated, collaborative approaches to observing and understanding Earth’s surface temperatures.

Table 5: First results of a long-term VIIRS LST (Land Surface Teperature) validation 62)


Figure 35: Schematic description of a USCRN (US Climate Reference Network) station (image credit: NOAA, NASA)

• June 21, 2013: Images crafted from a year's worth of data collected by the Suomi NPP satellite, provide a vivid depiction of worldwide vegetation (Figure 36). The image, provided by NASA and NOAA on June 19, 2013, shows the difference between green and arid areas of Earth as seen in data from the VIIRS (Visible-Infrared Imager/Radiometer Suite) instrument aboard Suomi NPP. VIIRS detects changes in the reflection of light, producing images that measure vegetation changes over time. 63) 64) 65)

Vegetation Index: There are many types of indices that measure vegetation and many are calculated by using satellite data to compare the relative difference between how much energy is absorbed by the land surface versus how much is reflected back into space. Plants absorb visible light to undergo photosynthesis, so when vegetation is lush, nearly all of the visible light is absorbed by the photosynthetic leaves, and much more near-infrared light is reflected back into space. However for deserts and regions with sparse vegetation, the amount of reflected visible and near-infrared light are both relatively high. The VIIRS sensor on the Suomi NPP satellite is sensitive to these different types of visible and near-infrared light.


Figure 36: Vegetation as seen by Suomi NPP (image credit: NASA/NOAA)

• On March 4, 2013, NASA transferred operational control of the Suomi-NPP mission to NOAA. The NOAA operations group now assumes responsibility for Suomi NPP. 66) 67)

Suomi NPP continues the observations of Earth from space that were pioneered by NASA's Earth Observing System. The satellite's five instruments are providing scientists with data to extend more than 30 key long-term datasets. These records, which include observations of the ozone layer, land cover, atmospheric temperatures and ice cover, provide critical data for global change science.

Suomi NPP also collects critical data for our understanding of long-term climate change while increasing our ability to improve weather forecasts in the short term. NOAA meteorologists are incorporating Suomi NPP information into their weather prediction models to produce forecasts and warnings that already are helping emergency responders anticipate, monitor, and react to many types of natural events.

• VIIRS instrument calibration: 68

- VIIRS continues to operate and calibrate satisfactorily (as planned and expected)

- Overall on-orbit performance meets the design requirements (such as SNR/NEdT)

- Continuous and dedicated calibration efforts are critical for maintaining SDR data and calibration quality

- The modulated RSR, as a result of mirror degradation, have been developed and applied to sensor SDR calibration and data production.

• December 05, 2012: Scientists unveiled an unprecedented new look at our planet at night at the American Geophysical Union meeting in San Francisco, CA. A global composite image, constructed using cloud-free night images from the Suomi-NPP satellite, shows the glow of natural and human-built phenomena across the planet in greater detail than ever before. 69


Figure 37: Composite map of the world assembled from data acquired by the Suomi NPP satellite in April and October 2012 (image credit: NASA Earth Observatory/NOAA NGDC)


Figure 38: This image of the continental United States at night is a composite assembled from data acquired by the Suomi NPP satellite in April and October 2012 (image credit: NASA Earth Observatory/NOAA NGDC, Ref. 69)

Legend to Figure 38: The image was made possible by the satellite's "day-night band" of the VIIRS (Visible Infrared Imaging Radiometer Suite) instrument, which detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe dim signals such as city lights, gas flares, auroras, wildfires and reflected moonlight.

• On October 28, 2012, Suomi NPP celebrated its first anniversary on orbit. 70

• October 2012: Hurricane Sandy (also referred to as Superstorm Sandy) made landfall along the southern New Jersey coast on the evening of Oct. 29, 2012. The Suomi NPP satellite acquired the accompanying image (Figure 39) of the storm around 3:35 a.m. Eastern Daylight Time on October 30 (UTC 7:35 hours on Oct. 30). The full moon, which exacerbated the water height at the time of the storm surge, lit up the tops of the clouds. 71

Sandy’s clouds stretched from the Atlantic Ocean westward to Chicago. Clusters of lights gave away the locations of cities throughout the region, but along the East Coast, clouds obscured city lights, many of which were out due to the storm. On October 30, CNN reported that several millions of customers in multiple states were without electricity.

On Nov. 1, 2012, the reported death toll from hurricane Sandy's flooding and high winds has now reached 160 (88 in the U.S., 54 in Haiti, 11 in Cuba), with first damage estimates ranging from $20 – $55 billion. 72
Hurricane Sandy made landfall on the New Jersey coast during the night of Oct. 29 and left more than eight million people without electricity from Maine to SouthCarolina, and as far west as Ohio. Hardest hit were New York City and northeastern New Jersey as is evident in a comparison of Suomi NPP images before and after the storm. 73


Figure 39: Suomi NPP VIIR (Visible Infrared Imaging Radiometer Suite) image of Hurricane Sandy on Oct. 30, 2012 (image credit: NASA)


Figure 40: Suomi NPP VIIRS true-color imagery from bands M3–M5, composited from three consecutive daytime passes on 17 June 2012, shows the continental United States and surroundings in vivid color detail (image credit: NOAA) 74

• In July 2012, Suomi NPP started the Direct Broadcast Service with the HRD (High Rate Data) link. Direct Broadcast data is unique in that it provides real-time data on a regional basis which enables quick evaluation of events at a local level. Researchers world-wide are then able to use customized algorithms, or mathematical formulas, turning raw data into images to help manage quickly changing regional events, such as rapidly spreading forest fires, rushing flood waters and floating icebergs at the poles that could affect the shipping and fishing industries. 75

Ultimately, Suomi NPP's direct broadcast data does two things: continue NASA's role in data continuity by picking up where MODIS will leave off, and enable users to pluck data that is of importance to them from the reservoir of information that comes down from Suomi NPP.

The DRL (Direct Readout Laboratory) at NASA/GSFC organizes and manages the funneling of data to the roughly 200 ground stations around the world that will use it. The DLR also provides the user community with a baseline processing system called IPOPP (International Polar Orbiter Processing Package). This framework is a real-time data processing system that enables the user community to process, generate and visualize direct broadcast data as it is transmitted to Earth (Ref. 75).

• In early March 2012, NASA has completed commissioning of the Suomi NPP spacecraft and its sensor complement. With the completion of commissioning activities, operation of the Suomi NPP has now been turned over to the JPSS (Joint Polar Satellite System) team. NOAA's JPSS Program provided three of the five instruments and the ground segment for Suomi NPP. A government team from the NOAA Satellite Operations Facility in Suitland, Md., will operate the satellite. 76) 77)

• In February 2012, the CrIS (Cross-track Infrared Sounder) became operational. Hence, CrIS is joining the other four instruments aboard the Suomi NPP spacecraft. 78)

• In Feb. 2012, the OMPS instrument began to continue an over three decade-long partnership between NASA and NOAA in studying ozone (Figure 41). 79)


Figure 41: The ozone suite on Suomi NPP continues more than 30 years of ozone data (image credit: NASA)

Legend to Figure 41: The image shows the thickness of the Earth's ozone layer on January 27th from 1982 to 2012. This atmospheric layer protects Earth from dangerous levels of solar ultraviolet radiation. The thickness is measured in Dobson units, in this image, smaller amounts of overhead ozone are shown in blue, while larger amounts are shown in orange and yellow.

• The CERES instrument cover was opened on January 26, 2012. The "first light" process represented the transition from engineering checkout to science observations. The next morning CERES began taking Earth-viewing data, and on Jan. 29 scientists produced an image from the scans. 80)


Figure 42: “First light” image of the CERES instrument observed on January 29, 2012 (image credit: NASA/NOAA CERES Team, Ref. 80)

Legend to Figure 42: The thick cloud cover tends to reflect a large amount of incoming solar energy back to space (blue/green/white image), but at the same time, reduce the amount of outgoing heat lost to space (red/blue/orange image). Contrast the areas that do not have cloud cover (darker colored regions) to get a sense for how much impact the clouds have on incoming and outgoing energy.

• The former NPP (NPOESS Preparatory Project) spacecraft has been renamed to Suomi NPP (National Polar-orbiting Partnership) on January 24, 2012 to honor the late Verner Suomi (1915-1995), a longtime UW (University of Wisconsin) -Madison professor and meteorologist (Ref. 1).

Suomi NPP is currently in its initial checkout phase before starting regular observations with all of its five instruments. The commissioning activities are expected to be completed by March 2012.


Figure 43: High-definition image of Earth observed on January 4, 2012 by the VIIRS instrument of Suomi NPP (image credit:NASA) 81) 82)

Legend to Figure 43: This composite image uses a number of swaths of the Earth's surface taken on January 4, 2012. The VIIRS instrument gets a complete daily view of Earth.

• The VIIRS instrument acquired its first visible range measurements on November 21, 2011 (Figure 45). To date, the images are preliminary, used to gage the health of the sensor as engineers continue to power it up for full operation.


Figure 44: A first full Earth view of VIIRS acquired on November 24, 2011 (image credit: NASA) 83)

Legend to Figure 44: Rising from the south and setting in the north on the daylight side of Earth, VIIRS images the surface in long wedges measuring 3,000 km across. The swaths from each successive orbit overlap one another, so that at the end of the day, the sensor has a complete view of the globe. The Arctic is missing because it is too dark to view in visible light during the winter.


Figure 45: Excerpt of the first natural color image of eastern North America acquired on Nov. 21, 2011 with VIIRS (image credit: NASA/NPP Team) 84)


Figure 46: The ATMS instrument acquired its first measurements on Nov. 8, 2011 (image credit: NASA/NPP Team) 85)

Legend to Figure 46: This global image shows the ATMS channel 18 microwave antenna temperature at 183.3 GHz on November 8, 2011. This channel measures atmospheric water vapor; note that Tropical Storm Sean is visible in the data, as the blue patch, in the Atlantic off the coast of the Southeastern United States. The ATMS data were processed at the NOAA Satellite Operations Facility (NSOF)