Minimize SKA (Square Kilometer Array)

SKA (Square Kilometer Array) Radio Telescopes

SKA Location    Overall Status    Australia Antenna Array  ASKAP development and mission status
Africa Radio Telescope Array    MeerKAT development and mission status   References 

The SKA project is an international effort to build the world’s largest radio telescope, with eventually over a square kilometer (one million square meters) of collecting area. The scale of the SKA represents a huge leap forward in both engineering and research & development towards building and delivering a unique instrument, with the detailed design and preparation now well under way. As one of the largest scientific endeavors in history, the SKA will bring together a wealth of the world’s finest scientists, engineers and policy makers to bring the project to fruition. 1)

Background: The history of the SKA begin in September 1993 the International Union of Radio Science (URSI) established the Large Telescope Working Group to begin a worldwide effort to develop the scientific goals and technical specifications for a next generation radio observatory. 2)

Subsequent meetings of the working group provided a forum for discussing the technical research required and for mobilizing a broad scientific community to cooperate in achieving this common goal. In 1997, eight institutions from six countries (Australia, Canada, China, India, the Netherlands, and the USA) signed a Memorandum of Agreement to cooperate in a technology study program leading to a future very large radio telescope.

On August 10, 2000, at the International Astronomical Union meeting in Manchester, UK, a Memorandum of Understanding to establish the ISSC (International Square Kilometer Array Steering Committee) was signed by representatives of eleven countries (Australia, Canada, China, Germany, India, Italy, the Netherlands, Poland, Sweden, the United Kingdom, and the United States).

This was superseded by a Memorandum of Agreement to Collaborate in the Development of the Square Kilometer Array which came into force on 1 January 2005 and which has been extended until 31 December 2007. This made provision for the expansion of the Steering Committee to 21 members (7 each for Europe, USA, and the Rest of the World) and the establishment of the International SKA Project Office.

In 2007, owing to a proposed expansion of the ISPO (International SKA Project Office), the ISSC called for proposals to host the Project Office. Three proposals were received, and following extensive discussion, the ISSC selected the University of Manchester as the host organization for the Project Office. A Memorandum of Agreement between the ISSC and the University of Manchester was signed in October 2007. The Project Office moved to the new Alan Turing building in Manchester, also home to the Jodrell Bank Center for Astrophysics, on 1 January 2008.

A new International Collaboration Agreement for the SKA Program was drawn up in 2007, which became effective on 1 January 2008. It was signed by the European, US, and Canadian SKA Consortia, the Australian SKA Coordination Committee, the National Research Foundation in South Africa, the National Astronomical Observatories in China, and the National Center for Radio Astrophysics in India. This agreement established the SKA Science and Engineering Committee (SSEC) as a replacement to the ISSC. The SSEC acts as the primary forum for interactions and decisions on scientific and technical matters for the SKA among the signatories to the International Collaboration Agreement.

A further agreement was drawn up in 2007, a Memorandum of Agreement to establish the SKA Program Development Office (SPDO). This provided a framework to internationalize the technology development and design effort of the SKA. This agreement, which became effective on 1 January 2008, was signed by the CSIRO Australia Telescope National Facility, University of Calgary, Cornell University, the Joint Institute for VLBI in Europe, and the National Research Foundation in South Africa. It agreed that the SPDO would be funded by signatories of this agreement, with payments being made into the SPDO Common Fund and used to finance the SPDO’s operational activities.

The project is now led by the SKA Organization, a not-for-profit company. The organization was established in December 2011 to formalize relationships between the international partners and centralize the leadership of the project.

The Office of the SKA Organization is growing rapidly and in November 2012 the office, previously based at the University of Manchester in the center of the city, relocated to a new building at the world famous Jodrell Bank Observatory in Cheshire, UK. The SKAO Headquarters is the central control hub for a global team who over the next decade is building the SKA – The largest radio telescope ever seen on Earth.

Participating Countries: Organizations from eleven countries are currently members of the SKA Organisation – Australia, Canada, China, India, Italy, New Zealand, South Africa, Spain, Sweden, the Netherlands and the United Kingdom. Further countries have expressed their interest in joining the SKA Organisation which will continue to expand over the coming years. 3)

SKA_Auto49

Figure 1: While 11 member countries are the core of the SKA, around 100 organisations across about 20 countries (including France, Germany, Japan, Portugal) have been participating in the design and development of the SKA and are now engaged in the detailed design of the telescope (image crdit: SKA)

Here is a list of links to the key participating nations:

- Australia: Department of Industry and Science

- Canada: National Research Council

- China: Ministry of Science and Technology of the People’s Republic of China

- India: National Centre for Radio Astrophysics

- Italy: National Institute for Astrophysics

- New Zealand: Ministry of Economic Development

- South Africa: National Research Foundation

- Spain: Ministry of Science, Innovation & Universities

- Sweden: Onsala Space Observatory

- The Netherlands: Netherlands Organisation for Scientific Research

- United Kingdom: Science and Technology Facilities Council

• During 2013, the SKA Organization sent out requests to research organizations and commercial partners to participate in the analysis and design of the components of the SKA’s 3-year final detailed design phase. This request for proposals included a reference conceptual design of the telescope, a work breakdown structure, a statement of the work required and additional reference documents. 4)

- As with other projects of this magnitude, such as the development of the Large Hadron Collider or space programs, the SKA is broken down into various elements, known as work packages that will form the final SKA telescope. Each work package element is managed by an international consortium comprising several world leading experts in their respective fields.

- The strategic aim of the SKA Organisation is that the work undertaken within each of the consortia is focused on these specific elements of the SKA project and that their work will cover the entire final phase of the pre-construction period, with critical design reviews along the way.

- The SKA Organisation will play a key role in the management of these teams around the world, ensuring that all of the elements integrate to form this unique telescope over the coming years. Each consortium has provided detailed management and verification plans, schedules, milestones and budgets for the various elements they will be working on.

- The consortia responsible for each work package are listed as follows. Click on each to get more detailed information on each work package and the team responsible for its delivery.

a) Assembly, Integration and Verification (AIV)

b) Central Signal Processor (CSP)

c) Dish (DSH)

e) Infrastructure Australia and Africa (INFRA AU/INFRA SA)

f) Low-Frequency Aperture Array (LFAA)

g) Mid-Frequency Aperture Array (MFAA)

h) Signal and Data Transport (SaDT)

i) Science Data Processor (SDP)

j) Telescope Manager (TM)

k) Wideband Single Pixel Feeds (WBSPF)

Collaboration between the various teams will be a key part of their involvement, as there will be a huge requirement to ensure that the various elements interface seamlessly together, much like a jigsaw, but one that will be refined and iterate to a better solution as time progresses.

Technical descriptions for the Work Packages at a global level

Summaries of Technical Descriptions for each of the Work Packages are as follows: (PDF links)

- Assembly, Integration and Verification (AIV)

- Central Signal Processor (CSP)

- Dish (DSH)

- Infrastructure South Africa (INFRA SA)

- Low-Frequency Aperture Array (LFAA)

- Mid-Frequency Aperture Array (MFAA)

- Signal and Data Transport (SaDT)

- Science Data Processor (SDP)

- Telescope Manager (TM)

- Wideband Single Pixel Feeds (WBSPF)

• January 23, 2017: SKA-AAMID (Aperture Array MID Frequency) telescope. 5)



The Location of the SKA

In 2012 the members of the SKA Organization agreed on a dual site location for the Square Kilometer Array telescope as well as a third site for the SKA HQ. 6)

The two sites which will host the core of the SKA Telescope are Australia and South Africa, whilst the SKA Organization Headquarters is in the UK.

This decision to collocate the telescopes in two sites came after careful consideration of all of the science goals, industry goals and suitability in terms of location, sustainability, local considerations and factors relating to economics and the site infrastructure.

The following are some of the criteria that were taken into account:

• Radio frequency interference from mobile phones, TVs, radios and other electrical devices.

• The characteristics of the ionosphere (the upper part of the Earth’s atmosphere) and the troposphere (the lower part of the Earth’s atmosphere).

• Physical characteristics of the site including climate and subsurface temperatures.

• Connectivity across the vast extent of the telescope itself as well as to communications networks for worldwide distribution of data produced by the SKA.

• Infrastructure costs, including power supply and distribution.

• Operations and maintenance costs.

• The long term sustainability of the site as a radio quiet zone.

In July 2013, the SKA Board passed the following resolution: ‘Following the recommendation of the Director-General of the SKA Organization, the SKA Board has instructed the SKA Office to proceed with the design phase for SKA Phase 1 (SKA1) assuming a capital expenditure cost ceiling for construction of €650 M. The evolution of the SKA Phase 1 project to fit within this cost ceiling will be guided both during the design phase and construction by scientific and engineering assessments of the baseline design undertaken by the SKA Office in collaboration with the community and SKA’s advisory bodies including the Science and Engineering Advisory Committee (SEAC). This decision is consistent with the primary objective of building an exciting, next-generation telescope capable of transformational science.’

SKA1 boundary conditions

• Site decision May 2012: SKA Observatory with two sites

- SKA1-low – Australia

- SKA1-survey – Australia

- SKA1-mid – South Africa

• Incorporate precursors on the sites to re-use as much existing infrastructure as possible

• SKA Board has set a cost-cap of €650 M for SKA1 construction

SKA1 design timeline

• 2013 start of preliminary design (4 November)

• 2014 complete preliminary design; re-baseline the Baseline Design

• 2016 complete detailed design

• 2017 initiate procurement/ pre-production runs

• 2018 start construction

SKA1-MID headline science

• HI-line (21 cm hydrogen line) from local Universe, to moderate redshifts

• Radio pulsars

• High sensitivity continuum

- Polarisation: magnetized plasmas, Galactic & Extragalactic

- potentially proto-planetary disks, if high frequency receivers enabled

• Other spectral lines (e.g. OH-lines)

• Some classes of radio transients

SKA1-MID baseline design

• Mixed Dish array

- 190 x 15 m SKA1 dishes

- 64 x 13.5 m diameter dishes from the MeerKAT array

- Equipped with receivers from 0.350 to 3.0 GHz for SKA1 (dishes capable of 5 receiver packages up to 20 GHz)

• Configuation

- Compact core with a diameter of ~1 km, built on the MeerKAT array center

- Further 2-D array of randomly placed dishes out to ~3 km radius, thinning at the edges

- Three spiral arms, a subset of the 5 equally spaced arms reserved for SKA2, extending to ~100 km from the center

- Array to be expanded to a much larger SKA2 array (by “density matching”)

• Sensitivity

- SKA1 sensitivity: ~6.9 m2/K

- SEFD (System Equivalent Flux Density) : ~1.7 Jy

Table 1: SKA1 baseline design: boundary conditions, design timeline, MID baseline sciene, MID baseline design 7)

SKA_Auto48

Figure 2: SKA1 construction start 2018 (image credit: SKA Office)

SKA_Auto47

Figure 3: SKA2 construction start 2022 (image credit: SKA Office)

SKA_Auto46

Figure 4: SKA overall timeline (image credit: SKA Office)



SKAO (Square Kilometer Array Observatory) overall status

• April 11, 2022: France is in the home straight to join the SKA Observatory (SKAO) as a full member. The milestone is in sight after the French government signed an accession agreement with the Observatory on Monday 11 April 2022. 8)

- The signing ceremony took place at the French embassy in London with Her Excellency Ambassador Catherine Colonna doing the honours on behalf of the French Republic and the Head of the Director-General’s Office Dr Simon Berry signing for the Observatory. In attendance was the Chair of the SKAO Council, Dr Catherine Cesarsky, representatives from the SKAO and the French Ministry of Higher Education, Research and Innovation, and the Director of Maison SKA-France, Dr Chiara Ferrari.

SKA_Auto45

Figure 5: Her Excellency Ambassador Catherine Colonna and the Head of the Director-General’s Office Dr Simon Berry signing an accession agreement between the French government and the SKA Observatory (image credit: France in the UK)

- “I am delighted to sign this crucial scientific agreement which will allow France to join the SKAO,” said Ambassador Catherine Colonna. “This signature reflects the interest of my country to play a major role at the international and inter-governmental level not only to increase our basic knowledge in astrophysics but also to understand the origin and to follow the evolution of our planet.”

- Following a decision by the SKAO Council and confirmation of intent by President Emmanuel Macron in 2021, the signature of the agreement means that France will now start the process of ratifying the Convention establishing the SKAO through its national processes. The resulting international instrument of accession will then be deposited at the British government’s Foreign, Commonwealth and Development Office in London, as the depositary of the Observatory Convention, to formally complete the membership process.

- Until then, French participation in the Observatory is possible through the cooperation agreement that the National Centre for Scientific Research (CNRS) signed with the SKAO on 7 March 2022. French engineers helped design the SKA telescope dishes, low-frequency antennas, receivers, and signal processors during the project’s preconstruction phase while French scientists have been involved in each of the SKAO Science Working Groups.

- “I am delighted that France has now initiated the process of joining the SKAO as a full member,” said the SKAO’s Director-General, Prof. Philip Diamond. “We have relied on the expertise of our French colleagues in radio astronomy, processing, and technology over the years and I look forward to their valued contributions in reaching the SKAO’s ambitious goals. To our French friends, I say bienvenue!”

- Dr Cesarsky added: “The Council has always been keen to attract a wide international participation in the SKA project and so I’m delighted to see France realise the President’s intent and make a strong commitment to this growing intergovernmental observatory.”

- SKAO membership is growing apace, with Switzerland having joined the Observatory’s seven founding members – Australia, China, Italy, the Netherlands, Portugal, South Africa, and the United Kingdom – at the end of 2021.

• December 21, 2021: Worth approximately €90 million in total, the contracts have been awarded to all seven current SKAO members, namely Australia, China, Italy, the Netherlands, Portugal, South Africa, and the United Kingdom. The majority of awards have been for software development with additional early contract awards for professional services contracts. These expand the SKAO’s own engineering and management capabilities ahead of further construction work, as well as procuring early components and subsystems needed for the first arrays. 9)

- So, what’s been happening since construction was approved? And how does it all work? Let’s take a deep dive.

- First off, teams are building on years and years of pre-construction design activity by partners all around the world that culminated in the production of the SKA Phase 1 Construction Proposal earlier this year. This thorough document of 256 pages stipulated the design baseline for the SKA telescopes, the work packages and construction milestones, as well as how member countries would benefit from their investment in the project by way of fair work return.

- Building on those years of preparatory work and substantial financial investment in the design of the SKA, countries expressed interest in supplying specific elements in which they had expertise such as the antennas, the supercomputers, the networks, software, etc. This resulted in a model where most contracts would be allocated to specific member countries, while unallocated contracts would be offered to all members.

- The result: over 60 “Tier 1” contracts placed by the SKAO. The vast majority are cash where the SKAO is the client, while a few are in-kind – paid for directly by countries. Below them sit “Tier 2” contracts, placed between Tier 1 contractors and sub-contractors to deliver specific elements of the contract.

- “There’s been a huge amount of work by teams within the Observatory and across the partnership over time which has accelerated in the recent past to ensure industry-readiness as soon as we’d hit the go button,” explains the SKAO’s Head of Procurement Services, Ian Hastings (read our piece on procurement preparations ramping up in December 2020 here).

- The “go button” Ian talks about was the approval of construction by the SKAO Council at the end of June 2021. This thrusted the SKA’s procurement process into its second stage: purchasing.

• SKAO Global Headquarters, Jodrell Bank, UK, 14 December 2021: The United Nations General Assembly has promulgated 2022 as the International Year of Basic Sciences for Sustainable Development – an initiative backed by the SKAO.

- The SKA Observatory (SKAO) sits on the initiative’s steering committee together with 25 other international scientific unions and partners, including fellow intergovernmental organisations CERN and ITER, and the International Astronomical Union.

- The General Assembly motivated its decision by highlighting “the high value for humankind of basic sciences” and stating that basic sciences are vital “to improve the quality of life for people all over the world”.

- The international year will provide a unique opportunity to showcase and improve the links between basic sciences and the 17 Sustainable Development Goals (SDGs) to be reached by 2030.

Observatory contributes to 14 goals

- Sustainability is one of the SKAO’s foundational values, with the Observatory and its partners contributing to 14 of the 17 SDGs.

- “We have committed to building a sustainable Observatory; this must lie at the heart of any 21st-century scientific facility,” said the SKAO’s Director-General, Prof Philip Diamond. “As such, as we deliver on our ambition to push technological boundaries to transform our view of the universe and advance knowledge, we will ensure that our actions always consider sustainability and we will do our part in delivering on the UN’s Sustainable Development Goals.”

- Although construction of the SKA telescopes only started in July 2021, the project has already produced a tangible and visible contribution to the SDGs. This is thanks to the contribution of partners around the world over many years of development, including building capacity and skills, generating innovation, creating jobs, boosting economies, training the new generation of scientists and engineers, but also responding to the Covid-19 pandemic.

- In its announcement, the UN said the successes in the global fight against the ongoing pandemic is a current reminder of the globe’s reliance on basic sciences.

Official launch in mid-2022

- The International Year of Basic Sciences for Sustainable Development (IYBSSD) is due to be officially launched at UNESCO’s headquarters in Paris in mid-2022. It will be marked by a number of conferences and cornerstone projects on different continents, with the SKAO planning its own series of activities in line with the international year.

- The resolution was co-sponsored by 37 countries, including SKAO members and prospective member countries South Africa, Spain, India, and Japan.

- Find more information on the International Year of Basic Sciences for Sustainable Development at https://www.iybssd2022.org.

SKA_Auto44

Figure 6: A wide view of the 43rd plenary meeting of the United Nations General Assembly that saw 2022-23 promulgated as the International Year of Basic Sciences for Sustainable Development (image credit: UN Photo/Loey Felipe)

• November 29, 2021: The SKA Observatory (SKAO) and the National Research Council of Canada (NRC) have signed a cooperation agreement for two years while the country’s federal government gives membership of the SKAO full consideration. 10)

- The NRC will deliver the digital correlator, the “brain” behind the SKAO’s telescope in South Africa. The agreement also allows Canada’s scientific and engineering communities to continue participation in the project.

SKA_Auto43

Figure 7: Prof Phil Diamond (left), SKAO Director-General, and NRC President Iain Stewart signed the cooperation agreement during an online ceremony on 24 November 2021 (image credit: SKAO)

Access to SKA a top priority

- Canada has been a member of the SKAO’s predecessor, the SKA Organisation, since its creation in 2011 and has been involved in the SKA Project from its earliest stages. Canadian astronomers have identified access to the SKA as a top priority in their decadal Long-Range Plans in 2000, 2010, and 2020. Scientists from across the country participate in nearly all SKAO science working groups, covering the gamut from the astronomical systems that are thought to form the cradle of life, to the earliest properties of our Universe.

- “This agreement is important in solidifying Canada’s ongoing interest in the SKA Observatory through the National Research Council of Canada,” said Prof Phil Diamond, SKAO Director-General. “Our Canadian colleagues have been key partners in the SKA Project since its inception, with significant contributions to the design of our telescopes. We look forward to continuing discussions with the NRC and the Canadian government about membership.”

- Dr Kristine Spekkens, Canada’s SKA Science Director and Professor at the Royal Military College of Canada and Queen’s University, said: “The SKA will be a fantastic facility that will enable Canadian astronomers to make important new discoveries about how the Universe works. The synergy between the capabilities of the SKA and the expertise of many Canadian astronomers is a key reason for the SKA’s high priority within our community.”

Spin-offs to help advance other industries

- While an optical telescope captures only the visible light from the electromagnetic spectrum, radio telescopes reveal the radio portion of the spectrum emitted from objects in space. When received by telescopes, these distant signals are both faint and buried in noise.

- Canadian data processing technology – developed by the NRC’s Herzberg Astronomy and Astrophysics Research Centre and industry partner MDA – is behind the extraordinary effort to identify and measure the weak signals from space in the large data stream coming from the SKA telescope in South Africa. Technical contributions to the SKAO telescopes have spin-off applications, which will help to advance other, far-reaching industries, from data centres to satellite communications, robotics, and more.

- “This agreement will support leading-edge astronomy, and create opportunities for Canadian industry with applications in areas such as telecommunications, consumer electronics and data centres, and open doors for ground-breaking discoveries by Canadian astronomers,” said NRC President Iain Stewart. “We are pleased to continue collaboration with our international partners on this transformative science facility.”

Positive socio-economic impacts already generated

- Beyond transformative science and technology, impacts on society and communities have been a core consideration of the SKAO’s mission. In particular, respecting Indigenous cultures and the local populations, and engaging positively with them, has been a key consideration for the SKA Project since early in its design phase. These core principles are well aligned with the priorities of the Canadian astronomical community as expressed in the 2020 Long Range Plan for Canadian Astronomy.

- SKAO and its precursor and pathfinder facilities around the world have already generated socio-economic impacts in a number of areas. These range from creating employment for local communities, boosting local education and local astro-tourism, to celebrating artists and ancient cultural wisdom from the Australian and South African sites through the Shared Sky Indigenous astronomy and art exhibition. Building upon this, the SKAO will impact four core areas: the economy; society; sustainability and culture; and will contribute to addressing the United Nations’ Sustainable Development Goals.

• July 3, 2021: A multibillion-dollar radio telescope is moving into its construction phase while still working to raise funding and deal with satellite megaconstellations whose interference “change the game” for their plans. 11)

- In a June 29 talk at the annual meeting of the European Astronomical Society, Philip Diamond, director general of the Square Kilometer Array (SKA) Observatory, announced that the observatory’s council had formally approval plans to move into the construction phase of the radio telescope.

- SKA is two separate facilities. SKA-Low, in Western Australia, will eventually be an array of more than 130,000 antennas performing observations at low frequencies. SKA-Mid will feature 197 dishes in South Africa for midrange radio frequencies, including 64 dishes of the existing MeerKAT array there.

- The council’s decision allowed the SKA to move into its construction phase on July 1. “We won’t see shovels in the round on the first of July,” he said, but rather requests for proposal to build various aspects of the two facilities. The observatory expects that construction to be completed by 2029.

- The SKA is designed to support a wide range of astronomy research, from studies of dark energy and pulsars to astrobiology. The concept for the SKA dates back three decades, when astronomers first considered concepts for a radio telescope that, as the name suggests, would span a square kilometer. Those concepts later evolved to the current design with facilities on two continents.

- One technological challenge that has also evolved over that time is radio-frequency interference. “We radio astronomers have been used to dealing with the interference from satellites and aircraft systems,” Diamond said at a June 29 press briefing. “What the megaconstellations do is that they change the game for us.”

- The difference is the sheer number of satellites, with proposals for potentially many tens of thousands of satellites. Many will be operating on frequencies that SKA-Mid, which operates between 350 megahertz and 15.3 gigahertz, is tuned to observe. While radio astronomy has priority for a few bands in that range, the satellites will be broadcasting — legally, he acknowledged — on many others.

- Diamond said the SKA was in technical discussions with satellite operators on mitigation measures “that would significantly limit the impact on the SKA telescopes.” He didn’t elaborate on the specific measures.

- During a talk at the conference July 2, Federico Di Vruno, spectrum manager of the SKA Observatory, said the observatory had developed “flagging and excision” technologies to identify radio-frequency interference by satellites and removing it from the data. “This represents a loss of observing time,” he said, but such interference from the constellations by OneWeb and SpaceX would account for less than four percent of observations.

- However, he warned that even if the problem is manageable with those constellations, future systems would only increase the problem. That includes expansions of both OneWeb and SpaceX’s Starlink as well as the proposed Chinese Guowang constellation that could ultimately have 13,000 satellites.

- “The prospect of constellations of tens of thousands of satellites is extremely concerning for radio astronomy,” he said. Operators, he suggested, could help by agreeing not to transmit when their satellites are passing over “radio quiet zones” surrounding the antennas.

- The SKA faces a separate challenge: raising the funding needed to build the two facilities. The observatory estimates spending 2 billion euros ($2.4 billion) to build and operate the SKA over the next decade. Diamond said that the SKA Observatory, a multinational organization, was still working to raise the money from more than a dozen countries.

- “We have raised the large majority of the required funding,” Diamond said, but declined to give a specific figure. “The members would not have been willing to go ahead with the decision to proceed with construction if they didn’t feel comfortable the requisite funds would flow.”

- “We have some years in front of us to raise the additional funds that we need, which is very much a minority,” he said.

- Notably absent from the SKA Observatory is the United States. Diamond said that American astronomers were involved in early planning for the radio telescope, and at one point the United States was expected to provide a third of the funding. However, the SKA did not emerge as a priority in the 2010 astrophysics decadal survey, where American astronomers instead selected other ground-based telescopes as more worthy of funding.

- “The timing of the decadal survey didn’t align with the SKA timing,” he said. “The U.S. SKA activities did not get a high enough priority, so the U.S. funds were — unfortunately, from our perspective — directed to other highly deserving projects.”

- American astronomers, he added, remain involved in SKA activities, including reviews. “It’s definitely not a divorce,” he said. “It’s just a fact of life from the 2010 decadal survey.”

• June 29, 2021: SKA Observatory Global Headquarters, UK, Tuesday 29 June 2021 – At a historic meeting of its Council last week, the recently formed SKA Observatory (SKAO) saw its Member States approve the start of construction of the SKA telescopes in Australia and South Africa. 12)

- The two telescopes, currently designated SKA-Low and SKA-Mid, names which describe the radio frequency range they each cover, will be the two largest and most complex networks of radio telescopes ever built.

- The decision to approve construction follows the creation of the SKAO as an intergovernmental organization earlier this year, and the publication of two key documents, the Observatory’s Construction Proposal and Observatory Establishment and Delivery Plan, last year. The documents are the culmination of over seven years of design and engineering work by more than 500 experts from 20 countries to develop and test the technologies needed to build and operate the state-of-the-art telescopes. Eleven international consortia representing more than 100 institutions including research labs, universities and companies from around the world, designed the antennas, networks, computing, software, and infrastructure needed for the telescopes to function.

- “I am ecstatic. This moment has been 30 years in the making,” said SKAO Director-General Prof. Philip Diamond. “Today, humankind is taking another giant leap by committing to build what will be the largest science facility of its kind on the planet; not just one but the two largest and most complex radio telescope networks, designed to unlock some of the most fascinating secrets of our Universe.”

- “I would like to thank everyone who has contributed to making this possible over the past decades, from the early inception of the project until now, and in particular all the teams who have worked so hard over recent years and powered on through a pandemic in very difficult circumstances to meet deadlines and make this milestone possible. I would also like to thank our Member States for their vision and the trust they’re placing in us by investing in a large-scale, long-term research infrastructure at a time when public finances are under intense pressure.”

- “I would like to add my thanks to the members of the SKAO Council and the governments they represent,” said Dr Catherine Cesarsky, Chairperson of the SKAO Council. “Giving the green light to start the construction of the SKA telescopes shows their confidence in the professional work that’s been done by the SKAO to get here, with a sound plan that is ready for implementation, and in the bright future of this ground-breaking research facility.”

- In addition to delivering exciting and revolutionary science, the construction of the SKA telescopes will produce tangible societal and economic benefits for countries involved in the project through direct and indirect economic returns from innovation and technological spin-offs, new high-tech jobs and boosted industrial capacity, among others. The well-documented impact prospect of the SKA Project (detailed in the Construction Proposal), outlining the multiple benefits already flowing to Member States and their communities thanks to their involvement in SKA-related activities over the last few years, was a key part of the case for the project.

- The SKA Project has seen impressive progress in recent months, with the successful completion of the ratification process of the SKAO treaty by all seven initial signatories, Australia, China, Italy, the Netherlands, Portugal, South Africa and the United Kingdom; excellent progress from France and Spain towards membership of the Observatory; and the signature of a cooperation agreement with Ecole Polytechnique Fédérale de Lausanne on behalf of Switzerland, with the Swiss government announcing its intention to eventually join the SKAO, pending approval from Parliament on the funding required for the participation of Switzerland until 2030. Other countries, including those that also took part in the design phase of the SKA telescopes (Canada, Germany, India, and Sweden), and other more recent joiners such as Japan and South Korea, complete the select list of Observers in the Council.

- “Today’s commitment by Member States is a strong signal for others to get aboard and reap the benefits of participation in this one-of-a-kind research facility,” added Dr Cesarsky.

Figure 8: The cost of constructing the two telescopes and the associated operations and business-enabling functions will be €2billion over the period 2021 – 2030 (video credit: SKAO)

- Over the past few years, the excitement in the science community about using the SKA telescopes to answer some of the most fundamental questions about our Universe, has been growing. Recent meetings have demonstrated this huge scientific interest, with close to 1,000 scientists taking part in the latest SKAO Science Meeting in March of this year. More than 1,000 researchers from hundreds of institutions across 40 countries are involved in the SKAO’s Science Working Groups that are working to ensure that the maximum science potential of the new observatory can be quickly realized.

- There has been significant engagement between the SKAO’s local partners, the South African Radio Astronomy Observatory (SARAO) and Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO), and local communities in preparation for the start of construction. In South Africa, SARAO has a memorandum of understanding with Agri-SA, many of whose members own farms which share boundaries with the MeerKAT radio telescope core or will host antennas part of the SKA-Mid telescope in the three spiral arms.

- Respectful dialogue and engagement with Indigenous communities has also been a hallmark of the project, with the signing of a Memorandum of Understanding between the San Council of South Africa and SARAO and, just last week, in‑principle support for the project from the Wajarri Yamaji, the traditional owners of the land on which the SKA-Low telescope will be built.

- “The SKAO will be a good neighbor and will work with local stakeholders, and in particular Indigenous communities, to ensure that they also benefit from the SKA project alongside other stakeholders nationally and internationally,” added Prof. Diamond. “We certainly intend to play our part in supporting local communities and boosting the local economy.”

- Procurement of major contracts for the SKA telescopes will start immediately, with some market surveys having already been conducted in the past few weeks. Over the coming months, some 70 contracts will be placed by the SKAO within its Member States, with competitive bidding taking place within each country.

- The first significant activity on site is due to happen early next year, with construction of the telescopes lasting until 2028. Early science opportunities will start in the next few years, taking advantage of the nature of radio telescope arrays, also known as interferometers, which allow observations with only a subset of the full array. The telescopes are planned to have a productive scientific lifetime of 50 years or more.

Figure 9: Prof. Philip Diamond, SKAO Director-General, looks back at 30 years of scientific, engineering and diplomatic milestones that have made the SKA project possible as the green light is given for construction of the SKA telescopes to start (video credit: SKA Observatory)

• June 3, 2021: China has ratified the Convention Establishing the SKA Observatory (SKAO), following the approval of the national legislature and signature of President Xi Jinping. 13)

- China is the seventh country to complete its ratification process, joining the Netherlands, Italy, South Africa, Australia, the UK and Portugal as a Member of the Observatory. National participation in the SKAO is led by the Chinese Ministry of Science and Technology (MOST).

- The Convention, signed in Rome on 12 March 2019, is the founding document of the SKA Observatory, the intergovernmental organization responsible for building and operating the SKA telescopes. The Convention came into force in January 2021 and the SKAO was formally launched on 4 February at its first Council meeting.

- “I am delighted to welcome China as a founding member of the SKA Observatory following this ratification,” said SKAO Director-General Prof. Philip Diamond. “Our Chinese colleagues have been great supporters of the SKA project in science, engineering and governance from the beginning. Their expertise during the design and development phases for the SKA telescopes, and the many fruitful collaborations forged between Chinese institutes and other SKAO partners, will continue to be essential as we begin construction in the coming months.”

- Chinese industry led the international consortium tasked with designing the SKA-Mid telescope dishes and manufactured two prototype dishes. The two dishes were assembled in Shijiazhuang in 2018 and one remained at the manufacturing facility to undergo further performance testing, while the other one was shipped to its final location at the South African site the following year for testing in the field. Looking ahead, as a Member, China is poised to lead the delivery of the full suite of dishes that will make up the SKA telescope array in South Africa.

- Another significant contribution from China to the project has been the first prototype SKA Regional Centre (SRC) at Shanghai Astronomical Observatory, which has since been joined by prototypes in more SKAO partner countries. These prototypes are paving the way for the future SRCs, an international network of high-performance computing facilities through which data from the SKAO telescopes will be processed, stored and accessed by astronomers around the world. The SRC network will provide storage for around 700 PB of astronomical data per year (the equivalent of close to 1.5 million 500 GB laptops).

- The team behind the Chinese SRC prototype has also collaborated internationally with other SRC teams and supercomputing centers to develop SKA data pipelines which have pushed the boundaries of data processing. This work, showcased at the 2019 SKA engineering meeting in Shanghai, was selected as a finalist for the prestigious Gordon Bell Prize, the supercomputing equivalent to the Nobel Prize.

- Researchers based at Chinese institutions are active in the SKA science community, with some 50 researchers participating in 13 of the SKAO’s Science Working Groups, helping to evolve and refine the science cases for the telescopes. China’s astronomy community is expanding rapidly, supported by strong investment in the field, the growth of education and training opportunities for Chinese students particularly on the data science front, and the increasing involvement of Chinese researchers in international collaborations using SKA pathfinder and precursor telescopes.

- The Five-hundred-meter Aperture Spherical Telescope (FAST) in China’s Guizhou province, a stunning feat of engineering and the world’s largest single-dish radio telescope, is part of the SKA pathfinder family of telescopes providing science and technology insights for the future SKAO telescopes. Inaugurated just a few years ago in 2016, FAST recently opened to the international community for the first time and has already been involved in breakthroughs, particularly in the area of pulsar science.

- China’s involvement in the SKA Project also provides powerful examples of the wider impact of radio astronomy in society, from the development of a burgeoning astro-tourism industry close to the FAST site, to regular summer schools training a new generation of researchers using data from the prototype SKA Regional Centre.

- All of the original signatories of the SKAO Convention have now completed their ratification processes, and more countries are due to join the Observatory in the coming weeks and months,” Prof. Diamond adds. “That puts us in a great position as we look to the next major milestone, the Council’s decision on approval of construction, that we expect to happen very shortly.”

• May 28 2021: “France will join the SKA Observatory.” With these words, French President Emmanuel Macron announced France’s accession to the intergovernmental organization while on a state visit to South Africa. Alongside Australia, South Africa is one of the host countries of the SKA Observatory (SKAO) radio telescopes, scientific instruments that promise to revolutionize our understanding of the Universe. 14)

- The announcement follows a unanimous decision by the SKAO Council, and makes France the first country to join the Observatory beyond its seven founding members: Australia, China, Italy, the Netherlands, Portugal, South Africa and the United Kingdom.

- In a joint communiqué following the visit, both President Macron and President Ramaphosa highlighted a number of aspects that the SKA project is poised to address, including building businesses and entrepreneurs and providing education and skills development for the future.

- “I am absolutely delighted to welcome France as a new member of the SKA Observatory,” said Director-General Prof. Philip Diamond from the SKAO Global Headquarters near Manchester in the UK. “Our French colleagues have extensive expertise in radio astronomy, processing and technology and have been important partners of the project over recent years. During the pre-construction phase of the SKAO telescopes, French scientists and engineers have engaged very positively in key aspects of the design and SKAO-relevant science, and have built a strong case for investment from their government to support the ambitious goals of the SKAO. I expect France’s contribution in many areas of the project will be critical over the coming years as we tackle construction and operations.”

- France has a 70-year history of radio astronomy, and its Nançay Radio-astronomy Station is home to antennas of an International LOFAR station and of the New Extension in Nançay Upgrading LOFAR (NenuFAR), both SKA pathfinder facilities.

SKA_Auto42

Figure 10: French President Emmanuel Macron and South African President Cyril Ramaphosa during President Macron’s state visit to South Africa on 28 May 2021 (image credit: SKA)

- France first became officially involved in the SKA Project in 2018 through the ‘Maison SKA-France’ consortium [15)], composed of universities, research organizations and industry and led by the French national research agency CNRS, Europe’s largest research organization. The public-private collaboration played a key role in further positioning the SKA project within industrial, scientific, and political spheres in France and as a result, the project was placed on the French Roadmap for Research Infrastructures.

- The French Ministry in charge of research, which will provide a substantial financial contribution to SKAO, has been very active in coordinating the preparation of France’s membership, in conjunction with the French Ministry of Foreign Affairs, the SKAO, the SKAO Council, CNRS and the Maison SKA-France consortium.

- In February, on the occasion of the founding of the SKA Observatory, the French government announced its intention to seek membership of the SKAO. Prof. Antoine Petit, Chairman and CEO of the CNRS said at the time: “I welcome France’s decision to become a member of SKAO and tackle a multitude of challenges: challenges both in astronomy and in the digital and technological worlds that will see academic and industrial researchers working together. The CNRS has strongly supported the idea of joining SKA, being motivated by these challenges, with the support of the partners of Maison SKA-France whom I thank and who, like all our researchers, are extremely enthusiastic about the scientific opportunities this brings.”

- France took part in five of the 11 international engineering consortia designing the SKAO telescopes, including contributions for the SKA dishes, low-frequency antennas, receivers and signal processing.

- French scientific interest in the SKA Project has greatly increased in recent years, with French participation in the international SKA preparatory science meetings growing significantly. The SKA France white paper, published in 2017, involved 178 authors from 40 institutes and six private companies.

- Building on this work, it is expected that hundreds of researchers in France will directly benefit from the operation of the SKA telescopes in areas such as astrophysics, cosmology, and fundamental physics. Beyond astronomy, in the digital and technological sectors, there is great potential for important spinoffs and contributions to society, particularly in the areas of data processing and telecommunications.

- “This great news reflects the strong momentum behind the SKA Observatory following its launch in February, and I warmly welcome France,” said Dr Catherine Cesarsky, SKAO Council Chair. “I know well the enthusiasm of French astronomers for this project and it is especially positive to see new members joining from beyond the group of countries involved in the SKAO Convention negotiations. This is a testament to how valuable SKAO’s contributions will be not only in science and engineering, but also its much wider impact on society through education and training, and innovations which will find their way to everyday life.”

February 4, 2021: SKAO Global Headquarters, Jodrell Bank, UK -The SKA Observatory, a new intergovernmental organisation dedicated to radio astronomy, was launched today following the first meeting of the Observatory’s Council. 16)

- The new Observatory, known as SKAO, is the world’s second intergovernmental organisation to be dedicated to astronomy. Headquartered in the UK on the grounds of the Jodrell Bank UNESCO World Heritage Site with sites in Australia and South Africa, SKAO is tasked with building and operating the two largest and most complex radio telescope networks ever conceived to address fundamental questions about our universe.

SKA_Auto41

Figure 11: Nighttime composite image of the SKA combining all elements in South Africa and Australia. Credit: SKAO, ICRAR, SARAO / Acknowledgment: The GLEAM view of the center of the Milky Way, in radio color [image credit: Natasha Hurley-Walker (Curtin / ICRAR) and the GLEAM Team]

Figure 12: “This is a historic moment for radio astronomy,” said Dr Catherine Cesarsky, appointed first Chair of the SKAO Council. “Behind today’s milestone, there are countries that had the vision to get deeply involved because they saw the wider benefits their participation in SKAO could bring to build an ecosystem of science and technology involving fundamental research, computing, engineering, and skills for the next generation, which are essential in a 21st century digital economy.”(video credit: SKAO)

- SKAO’s telescope in South Africa will be composed of 197 fifteen- meter-diameter dishes located in the Karoo region, 64 of which already exist and are operated by the South African Radio Astronomy Observatory (SARAO), while the telescope in Australia will be composed of 131,072 two meter-tall antennas located on the Commonwealth Scientific and Industrial Research Organisation’s (CSIRO) Murchison Radio-astronomy Observatory.

- The creation of SKAO follows a decade of detailed engineering design work, scientific prioritisation, and policy development under the supervision of its predecessor the SKA Organisation, supported by more than 500 engineers, over 1,000 scientists and dozens of policy-makers in more than 20 countries; and is the result of 30 years of thinking and research and development since discussions first took place about developing a next-generation radio telescope.

Figure 13: “Today marks the birth of a new Observatory,” said Prof. Philip Diamond, appointed first Director-General of SKAO. “And not just any observatory – this is one of the mega-science facilities of the 21st century. It is the culmination of many years of work and I wish to congratulate everyone in the SKA community and in our partner governments and institutions who have worked so hard to make this happen. For our community, this is about participating in one of the great scientific adventures of the coming decades. It is about skills, technology, innovation, industrial return, and spin offs but fundamentally it is about a wonderful scientific journey that we are now embarking on.”(video credit: SKAO)

- The first SKAO Council meeting follows the signature of the SKA treaty, formally known as the Convention establishing the SKA Observatory, on 12 March 2019 in Rome, and its subsequent ratification by Australia, Italy, the Netherlands, Portugal, South Africa and the United Kingdom and entry into force on 15 January 2021, marking the official birth date of the observatory.

- The Council is composed of representatives from the Observatory’s Member States, as well as Observer countries aspiring to join SKAO. Among these are countries that took part in the design phase of the SKA such as Canada, China, France, Germany, India, Spain, Sweden and Switzerland, and whose future accession to SKAO is expected in the coming weeks and months, once their national processes have been completed. Representatives of national bodies in Japan and South Korea complement the select list of Observers in the SKAO Council.

- At its first meeting, the SKAO Council approved policies and procedures that have been prepared in recent months – covering governance, funding, programmatic and HR matters, among others. These approvals are required to transfer staff and assets from the SKA Organisation to the Observatory and allow the latter to become a functioning entity.

- “The coming months will keep us very busy, with hopefully new countries formalising their accession to SKAO and the expected key decision of the SKAO Council giving us green light to start the construction of the telescopes,” added Prof. Diamond.

- SKAO will begin recruitment in Australia and South Africa in the next few months, working alongside local partners CSIRO and SARAO to supervise construction, which is expected to last eight years, with early science opportunities starting in the mid 2020s.

December 16, 2020: London, United Kingdom – The UK, home to the Square Kilometer Array (SKA) Global Headquarters, has now ratified the Convention to establish the SKA Observatory (SKAO). This completes the process needed for the Observatory to be formally created. 17)

- SKAO is the intergovernmental organization responsible for building and operating the SKA telescopes, which together will form the world’s largest radio telescope and will enable scientists to study the universe in more detail than ever before.

- The Convention stipulates that at least five nations, including the three host countries – Australia, South Africa and the UK – must ratify the text for it to enter into force. The UK’s ratification, following that of its two fellow host countries and founding members Italy, the Netherlands and Portugal, means SKAO can now formally be established.

- The first meeting of the SKAO Council, the Observatory’s governing body representing Member States, is expected to take place in early 2021.

SKA_Auto40

Figure 14: A certified copy of the SKA Observatory Convention which is held at SKAO Headquarters in the UK. The original is held at the UK’s Foreign, Commonwealth and Development Office, the depository of the Convention (image credit: SKA Organisation)

SKA in the UK

- “The UK ratification is fantastic news and means SKAO can now enter into being as soon as January,” said SKA Director-General Prof. Philip Diamond. “It has been an exciting journey since the signature of the SKAO Convention in Rome in March 2019 but given the uncertainty that continues in the world around us, wrapping up the year on such a positive note and having the Observatory’s founding members solidifying their commitment to the SKA is extremely heartening.”

- The UK hosts the SKA Global Headquarters, located at the historic Jodrell Bank Observatory in Cheshire, near Manchester. The £20million SKA HQ building, inaugurated in July 2019, was co-funded by the UK Government’s Department for Business, Energy and Industrial Strategy through the Science and Technology Facilities Council (STFC), The University of Manchester and Cheshire East Council.

- Jodrell Bank, recognized as a UNESCO World Heritage Site in 2019 for its contributions to radio astronomy, is the central hub of the UK’s e-MERLIN national facility. This network of seven radio telescopes spread across the UK (including the iconic 76m Lovell Telescope) together form an SKA pathfinder instrument.

- Science Minister Amanda Solloway said: “The ambition of the Square Kilometer Array is one of the most important scientific endeavors of our generation that could open up unprecedented opportunities for astronomers across the world.

- “The UK is proudly home to the SKA headquarters and today’s milestone brings us one step closer to constructing these sophisticated telescopes that will enable our scientists to explore the universe in more detail than ever before – potentially expanding our knowledge of astronomy.”

- Executive Chair of STFC Professor Mark Thomson said: “The Square Kilometer Array is one of the flagship international science facilities of this generation and I am delighted that the UK’s ratification of the Treaty means work towards the construction of this vast telescope array can proceed rapidly. This is an extremely important and exciting moment for astronomy.

- “The SKA will help us to probe some of the fundamental questions about the origins of the Universe and, with this confirmation of UK government support, it is now down to the hard work of scientists in the UK and around to globe to provide vital technology and expertise to bring SKA to life.”

SKA on the ground

- Scientists based at UK institutions make up 15% of members within the SKA’s Science Working Groups and Focus Groups and were the largest contributors of the SKA Science Book that was published in 2015.

- The UK has also, supported by STFC, led the design and delivery of key elements of the SKA during the pre-construction phase of the telescopes through its university partners at the Universities of Cambridge, Manchester and Oxford, UK industry and STFC’s Daresbury Laboratory, Rutherford Appleton Laboratory and UK Astronomy Technology Centre.

- This included leading the SKA’s international Science Data Processor and Signal and Data Transport engineering design consortia. UK institutions were also heavily involved in the SKA’s Telescope Manager software element and in the design process for the SKA’s low-frequency antennas.

About the SKA

- The SKA project is an international effort to build the world’s largest radio telescope. The SKA is not a single telescope, but a collection of telescopes, called an array, to be spread over long distances. It will be constructed in Australia and South Africa with a later expansion in both countries and into other African countries.

- The design has been led by the SKA Organisation based near Manchester, UK and supported by more than 1,000 engineers and scientists in 20 countries. The SKA Organisation is transitioning to the SKA Observatory, an intergovernmental organisation established by treaty, to undertake the construction and operation of the telescope. Learn more about the transition to the SKA Observatory here.

- The SKA will conduct transformational science and help to address fundamental gaps in our understanding of the Universe including the formation and evolution of galaxies, fundamental physics in extreme environments and the origins of life in the Universe.

• December 11, 2020: Following a recent approval by its national Parliament, Portugal has ratified the Convention establishing the Square Kilometer Array Observatory (SKAO). The Convention was signed by seven countries, including Portugal, in Rome on 12 March 2019, a critical milestone that triggered a legislative ratification process in each country. 18)

- Portugal joins the Netherlands, Italy, South Africa and Australia as founding members of SKAO, the intergovernmental organisation tasked with building and operating the world’s largest radio telescopes, namely the SKA telescopes, to be located in South Africa and Australia. SKAO will come into being once the remaining host country, the UK, home of the SKAO Global Headquarters, has completed their ratification process. This is expected to happen before year’s end, opening the door for the first governing SKAO Council meeting to be held in January 2021.

- Portuguese involvement in SKAO will be managed by the Portuguese Space Agency, Portugal Space, acting on behalf of the Portuguese government to promote the country on the international Space scene and strengthen their collaboration on the world stage.

- ENGAGE SKA (Enabling Green E-Science for the Square Kilometer Array), a national radio astronomy research infrastructure backed by the Portuguese National Roadmap for Research Infrastructures, developed a strategy to ensure a strong Portuguese involvement in the SKA project, fostering the inclusion of Portuguese scientists, engineers and industry in the SKA’s design and scientific research. ENGAGE SKA built a broad partnership bringing together universities and industry within the SKA design consortia.

- “Portugal’s participation in the SKA program and the fact that Portugal is a founding member of the SKA Observatory opens new opportunities for young people, researchers, astronomy professionals and amateurs in Portugal to be involved in one of the most revolutionary scientific cooperation initiatives at a global level, which will make it possible to make high-resolution astronomy using any of our computers or portable cell phones,” says Manuel Heitor, Portuguese Minister of Science, Technology and Education. “This program finally democratizes access to astronomy and to the knowledge of the universe, stimulating the curiosity and scientific creativity of young people and adults, as well as opening new paths to investigate to deepen the knowledge about the creation of life and the fundamental principles of the evolution of the Universe.”

- “I am very pleased to welcome Portugal as one of the founding members of SKAO,” said Director-General Prof. Philip Diamond. “Europe has a strong radio astronomy base and so it is great to see more European involvement in SKA. Portugal becomes the third European country to ratify the SKA convention with more on the path to membership. Portugal’s expertise in the areas of green computing and data handling are particularly welcome.”

- ENGAGE SKA has contributed with several key computing infrastructures, now part of the Portuguese Advanced Computing Network. This includes the 239 TFLOPS supercomputer, Oblivion@SKA inaugurated in February 2020, and the Centre of Competence for Advanced Computing at the University of Aveiro (CCACUA), inaugurated in November 2020. These facilities are designed to support the wider Portuguese scientific community, and a large share of their compute time will be open to society for studies as diverse as fire monitoring, precision agriculture, green energy, smart factories or the COVID-19 pandemic, in a prime example of radio astronomy’s wider impact in society and in addressing the United Nations’ Sustainable Development Goals. ENGAGE SKA and CCACUA played a key role in the SKA software development to date, and in partnership with UCLCA-Coimbra will play a vital part in the SKA’s second Science Data Challenge which is about to start, as one of the high-performance computing centers that will store simulated SKA data for astronomers to access.

- “Portugal is taking a big step forward in the strategy for astronomical science to not only provide the scientific community with greater opportunities for the development of science, but also for an entire industrial sector that opens up new business and technology development opportunities”, says Ricardo Conde, Portugal Space President. “Together with the Portuguese participation in other international organisations, this is an opportunity to look forward to increasing the Portuguese scientific community and to attract young students for these domains of science. Being part of SKAO, the Portuguese Space Agency is committed to explore new opportunities within an international frame collaboration.”

• October 7, 2020: The SKA Organization (SKAO) – which leads the delivery of the international Square Kilometer Array (SKA) project – has undertaken a preliminary analysis of the potential impact of current satellite mega-constellations on its telescopes. The analysis quantifies this impact and identifies possible mitigations. The SKA project is an intergovernmental collaboration between 15 countries involving thousands of scientists and engineers to build and operate the world’s largest radio observatory, with two telescopes located in Australia and South Africa. 19)

The study focuses on the impact of the deployment of the principal currently planned space-based systems, totalling 6,400 satellites, on the SKA-Mid telescope soon to be erected in South Africa, which will consist of an array of 197 dishes.

Note 1: A potential impact on the SKAO telescope in Australia, operating in the 50 MHz-350 MHz frequency range, exists due to signals transmitted from the ground bouncing off satellites and being detected by the SKAO antennas. A full impact assessment of this interference is planned.

SKAO’s low-frequency telescope in Western Australia, which uses a different antenna technology and will operate at lower frequencies, is not the subject of the analysis reported here.

Key points and findings (based on deployment of 6,400 satellites)

- The satellites in the various constellation projects will transmit signals within the frequency range covered by the Band 5b receivers of the SKA-Mid telescope in South Africa (one of seven bands planned for the telescope).

- Without specific mitigation actions by the constellation operators, there is likely to be an impact on all astronomical observations in Band 5b.

- This impact includes a loss of sensitivity in the frequency range used by the constellations, leading to astronomical observations in that range taking 70% longer.

- The science impact is most significant for studies of molecular and atomic spectral lines in that range, including complex organic molecules; Class II methanol masers; and a wide range of extragalactic molecular lines.

- Viable mitigation techniques identified by SKAO can reduce this impact on SKA-Mid by a factor of 10, if implemented by relevant satellite operators.

- SKAO remains committed to minimizing the loss of scientific discovery through all available avenues. SKAO will continue to work closely with industry on ways to minimize the damage caused by mega-constellation transmissions and is looking forward to a positive response on these proposed solutions.

- For significantly larger constellations, of up to 100,000 satellites, the effect on the SKA would be much worse, potentially threatening the viability of the complete Band 5b for 100% of the time, unless stringent mitigation actions are put in place.

Use of the radio frequency spectrum

Due to their exquisite sensitivity, the two SKAO telescopes will be built in remote locations far away from artificial radio frequency interference. These locations enjoy legal protections, declared as national Radio Quiet Zones (RQZ), which protect them from ground-generated radio signals, such as mobile phones, broadcasting transmitters or Wi-Fi to name a few examples. However, the RQZ status provides no protection against interference from space-borne transmitters.

Radio transmissions from satellite constellations use a frequency range which has been in use by the satellite industry for many years. It sits within the range of frequency observed by the SKA-Mid’s band 5b receivers, and is immediately adjacent to an internationally protected radio astronomy band (Note 2). However, radio astronomy has been able to conduct observations in all these frequency ranges due to the small number of (visible) satellites and their fixed position in the sky (most of them in geostationary orbit). The deployment of thousands of satellites in low earth orbit (LEO) will inevitably change the situation as astronomers now face a much larger number of fast-moving radio sources in the sky (Note 3).

Note 2: The International Telecommunication Union (ITU), a United Nations agency, through its Radiocommunication sector regulates the international use of the radio spectrum and satellite orbits. Radio astronomy was first officially recognized as a radiocommunication service in 1959, when it was agreed to protect certain narrow bands for radio astronomy observations. Satellite manufacturers are bound by international agreements under the ITU, which guarantee radio astronomy protected bands, including that at 10.6-10.7 GHz, are not affected by their transmissions if strict control is exercised over the spill over from one band to another – a perennial problem with other satellite operators.
However, the field of radio astronomy has developed tremendously since and new scientific knowledge has required radio astronomers to expand their observations beyond the traditionally protected bands. The majority of SKA’s Band 5b – and indeed of all of the SKA bands – is therefore not protected by ITU regulations. Current legislation in place to protect the sites is also only enforceable on ground-based emitters, while airborne and space radio communications fall under the ITU and are not similarly restricted.

Note 3: Recent filings to the FCC have revealed operators’ plans to increase the mega-constellation size to tens of thousands of satellites. This dramatic increase in numbers would mean that, if left unmitigated, the effect of these constellations on the SKA would be much worse than predicted above, potentially threatening the viability of the complete Band 5b for 100% of the time. This would require further action and more stringent mitigation in order to protect the SKA. Filing with the FCC allows operators to service the US market and is a useful collecting point for information on Industry’s intentions for satellite constellations. The telecoms regulators of home countries of the major proposers, currently UK, Canada, France, Netherlands, Norway, Luxembourg, Liechtenstein and China will also have a role to play in promoting such mitigations.

SKA_Auto3F

Figure 15: Frequency coverage of the SKAO telescopes with a zoom on SKA-Mid Band 5B, protected radio astronomy band and satellite downlink (image credit: SKAO)

Impact on SKA

Elon Musk, the CEO of SpaceX (which is currently deploying the Starlink mega-constellation), said recently in a public statement that: “... Starlink won’t be seen by anyone unless looking very carefully and will have ~0% impact on advancements in astronomy.”

The SKAO study shows that, for radio telescopes in general and for SKA in particular, this is not the case and specific mitigation actions will be needed to minimize this impact.

SKAO’s analysis focused on three issues:

1) Physical damage: our study ruled out concerns about physical damage to the Band 5b receivers through intense radio signals from the satellites directly illuminating the dishes.

2) Saturation of the instruments: very strong interfering signals can saturate the receiver systems and thereby drown out all other signals seen by the Band 5b receivers. As a consequence, all data in that frequency band would be lost, rendering these receivers useless for a portion of the time. For the first phase of the constellation deployments (about 6,400 satellites in total), saturation is predicted to occur for a few percent of the time assuming there is no direct illumination of the dishes by the satellites. For significantly larger constellation sizes (up to more than 100,000 satellites), saturation would be essentially continuous without significant mitigation measures implemented by the satellite operators.

3) Scientific impact: our study demonstrated even with the current smaller constellation sizes (of 6,400 satellites), there is likely to be a continuous loss of sensitivity impacting all astronomical observations in Band 5b within the frequency range of the satellite’s transmissions unless mitigating actions are implemented. The science impact of this will be most significant for studies of molecular and atomic spectral lines in that range. This includes studies of complex organic molecules; Class II methanol masers; and a wide range of extragalactic molecular lines.

“There is tremendous scientific and public interest in identifying the origins of life beyond that found on Earth and one of the most promising methods of tracking it down elsewhere in our Galaxy is the detection of complex pre-biotic molecules, whose spectral signatures are concentrated between about 10 and 15 GHz,” says Dr Robert Braun, SKA Science Director. “This is only one of many exciting science goals that depend on sensitive access to this frequency range. The prospect of losing sensitivity in this key frequency band is extremely worrying.”

A direct impact of the lost sensitivity will be a 70% increase in the required integration time – the amount of time astronomers need to look at a particular object in order to observe it clearly – in the satellite transmission range. In other words, each observation in that range will require 70% more time, and therefore only approximately half as many observations can be carried out overall.

“A loss of observing efficiency on top of the expected large oversubscription on the telescope will translate directly into lost science and it is quite possible that the most challenging experiments that might otherwise have been undertaken will no longer be viable at all in these circumstances,” confirms Dr Braun.

Possible mitigation measures

To ensure that the impact of the current and planned satellite constellations is minimized, the SKAO telescope in South Africa has to be actively protected by lowering the power of satellites’ transmissions received at the site. SKAO believes there are different mitigation techniques that can make this possible, depending on the technology of the communications payloads of the satellites.

One of these mitigation techniques is for the satellite transmitters not to point their beams near the SKAO dishes. SKAO would require operators to steer their satellites’ beams away from the telescope site, a measure which would require a simple software modification with no repercussion on the constellation’s deployment, positioning or hardware. While a cost-effective implementation of this solution does depend on the hardware and software deployed on the satellites, operators already use this technique to comply with international regulations when their satellites cross the path between geostationary satellites in higher orbit and their receiving ground stations, for example to avoid affecting telecommunications and TV transmissions.

This mitigation could reduce the impact on the SKA by a factor of 10 over that noted previously and result in a 7% increase of integration time for SKA observations within the satellite transmission range (Note 4). While any loss of sensitivity is regrettable, SKAO recognizes the need for compromise between the competing scientific and commercial drivers.

Note 4: In addition to identifying this mitigation solution, SKAO has gone further and modelled this solution for a constellation serving population centers surrounding the SKAO site in South Africa. SKAO determined that the satellite beams would need to be steered by a minimum of 20 degrees away from the site to be effective. As the SKAO model has some uncertainty around it, since we don’t have full access to all the technical information and tools, SKAO encourages satellite operators who own the necessary data to develop a precise model, so that the impact can be better understood, both on the telescope and on potential accessibility issues for those populations.

It is worth noting that the commercial incentive for operators to point their satellite beams towards the South African SKA site is already significantly limited, with the national Astronomy Geographic Advantage Act of Parliament regulating the licensing and roll out of the necessary ground-based infrastructure for satellite operators to service users in the area around the South African SKA site.

“Thanks to our modelling work, the potential impact of satellite mega-constellations on the SKA is now understood,” says Prof. Philip Diamond, SKA Director-General. “We are building a multi-billion euro state-of-the-art research facility funded by taxpayers around the world, and we need to protect and maximize its ability to deliver innovation and new knowledge for humanity.”

Prof. Diamond adds: “In an effort to be constructive and offer solutions to industry, we have also identified viable mitigation options and modelled them. I’m reassured by Elon Musk’s public statements assuring us that there would be no impact on astronomy and welcome the constructive engagement we’ve had with industry so far. We look forward to satellite operators’ proactive engagement with the solutions we propose here today to safeguard the SKA’s Member States taxpayer investments in the SKA.”

SKA_Auto3E

Figure 16: The Karoo Astronomy Advantage Area (KAAA) was established as part of the Astronomy Geographic Advantage Act 2007. Consisting of a polygonal area of ~500 km x 300 km at extents, this Radio Quiet Zone provides radio protection to the South African site of the SKA-Mid telescope (image credit: SKAO)

• September 29, 2020: Australia, the future home of the SKA’s low-frequency telescope, has ratified the Convention Establishing the SKA Observatory. 20)

- Australia is the fourth country to complete its national process of ratification, joining the Netherlands, Italy and fellow SKA telescope host country South Africa.

- The Convention, signed by seven countries in Rome on 12 March 2019, establishes the SKA Observatory – the intergovernmental organization responsible for building and operating the SKA telescopes. It enters into force once five countries, including the three hosts Australia, South Africa and the UK, ratify the text. With the UK expected to complete its ratification in the coming weeks, it is hoped the SKA Observatory will come into being before the end of the year.

- “I am delighted that Australia has ratified the SKA Observatory Convention,” said SKA Director-General Prof. Philip Diamond. “Australia’s commitment to the SKA has been steadfast since the early days of the project. We are now in the very strong position to push forward with both our telescope host countries having completed the ratification process.”

- The country is home to two SKA precursor telescopes located on site at the Murchison Radio-astronomy Observatory in Western Australia: CSIRO’s 36-dish Australian SKA Pathfinder (ASKAP), and the Murchison Widefield Array (MWA), an international collaboration involving 21 institutions. These facilities are carrying out world-class research and providing invaluable science and technology insights for the development of the SKA.

- Australian Minister for Industry, Science and Technology, the Hon Karen Andrews MP, announced the ratification, saying that the SKA project is a “great example of how science and technology can drive industry forward, to grow our economy and create the jobs of tomorrow”.

- Australia has a long history of leading in radio astronomy. As well as ASKAP and MWA, it is also home to the iconic Parkes telescope, an SKA pathfinder and second largest steerable radio telescope in the southern hemisphere. Scientists based at Australian institutions are active in all 14 of the SKA’s Science Working Groups and Focus Groups, and Australian institutions are deeply involved in technology development, in particular instrumentation, data processing and high-performance computing.

- Prof. Diamond adds. “The continued progress of the SKA Project this year reflects the firm support of governments for fundamental research even in the face of a pandemic. This commitment has not only borne fruit in the fight against COVID-19 but will also be key to supporting the economic recovery of our member states as they emerge from this crisis.”

• June 2, 2020: South Africa, the future home of the SKA’s mid-frequency telescope, has ratified the Convention Establishing the SKA Observatory after the South African Parliament approved the Convention and Dr Naledi Pandor, Minister of the Department of International Relations and Cooperation, signed the Instrument of Ratification. 21)

- It is the third country after the Netherlands and Italy to complete its national process supporting the establishment of the SKA Observatory; the intergovernmental organisation responsible for building and operating the SKA telescopes, and the first of the SKA’s three host countries to do so.

SKA_Auto3D

Figure 17: Close up of the certified copy of the SKA Observatory Convention kept in the Council Chamber of SKA Global Headquarters (image credit: SKA Organisation)

- South Africa was among the seven countries that signed the Convention in Rome on 12 March 2019, alongside Australia, China, Italy, the Netherlands, Portugal and the United Kingdom. The Convention will enter into force once five countries, including the three hosts Australia, South Africa and the UK, ratify the text.

- “This is a significant moment not only because South Africa is the first of our hosts to ratify the Convention, but with multiple countries having done so, we are now closer to the SKA Observatory formally existing,” said SKA Director-General Prof. Philip Diamond.

- The South African Radio Astronomy Observatory (SARAO) has been leading the country’s participation in the SKA on behalf of the Department of Science and Innovation.

- South Africa is already home to two precursor telescopes: the 64-dish MeerKAT array which will ultimately form part of the SKA’s mid-frequency telescope, and the Hydrogen Epoch of Reionisation Array (HERA), which is under construction. As well as conducting world-class research, MeerKAT is also providing vital input for SKA design work and science planning.

- “Ratification is a critical milestone for the SKA project. I would like to thank both Houses of Parliament as well as the Department of Science and Innovation for supporting our country’s participation in this iconic global science infrastructure project,” said Rob Adam, Managing Director of SARAO.

- South Africa’s radio astronomy and related engineering expertise has evolved rapidly in the past two decades, and the contribution of South African institutes and industry in the detailed design work of the SKA has been invaluable. Recently, stunning early images from MeerKAT – currently the world’s most powerful radio telescope in its category – have cemented the country’s position in the premier league of radio astronomy. Scientists at South African institutions are also active in 10 of the SKA’s Science Working Groups and Focus Groups.

- “South Africa’s ratification of the Convention confirms South Africa’s strong commitment to the global SKA partnership. We are determined to ensure the success of what will be the first ever large global research infrastructure hosted in Africa,” said Dr Blade Nzimande, South Africa’s Minister of Higher Education, Science and Innovation. “South Africa’s participation in the SKA project has significantly strengthened South Africa’s data science capabilities, precious resource in the fight against COVID-19. More than ever our world needs international cooperation and solidarity in science such as enabled by projects such as the SKA.”

- “Even with the terrible toll of this novel coronavirus around the world, countries have shown remarkable commitment to the SKA and continue to push forward. It is testimony to the strength of our global collaboration and the impact the project will have,” added Prof. Diamond. “Momentum is strong, and we expect Australia, China, Portugal and the UK to ratify in the coming months, with other countries joining the Observatory in due course. Once the SKA Observatory is up and running, construction of the largest science facility on the planet will begin in earnest.”

• May 4, 2020: Construction of the giant Square Kilometer Array (SKA) is likely to be delayed by several months, with COVID-19 lockdown measures making some tests of prototype equipment impossible, and parliaments slower to ratify the intergovernmental convention governing the building and operation of the radio telescope. 22)

- Nine years after it was agreed SKA would be split between sites in South Africa and Australia, building the telescope was due to start in January 2021. But last week Philip Diamond, director general of the SKA Organisation, said COVID-19 enforced delays mean the project is now aiming for, “commencement of SKA1 construction activities as early in 2021 as possible.”

- Diamond hopes the delay will be minimal. “If it’s two or three months, we’ll count that as a success,” he said. SKA’s headquarters at Manchester University’s Jodrell Bank Observatory where Diamond is based, have now been shut down for more than six weeks. In an update last week, he said, “It is my expectation that the shutdown will continue for some weeks yet.”

- A few months looks like marginal in terms of the time frame for the project, with SKA not due to be fully operational until 2030. Once complete, the telescope will have the capacity to look back in time to the first billion years of the universe and the formation of the first stars and galaxies.

- That will be achieved by combining data from a collection of large antennas spread across remote areas of South Africa and Australia. The €1.8 billion international project also involves Spain, Italy, Germany, Switzerland, China, Canada and India, amongst other countries.

• April 28, 2020: I hope that all of you and your families are safe and healthy in this crisis that has gripped the world. It is heartening to see the way that our fellow citizens across the globe have risen to the challenges imposed by the pandemic, especially the way in which the world’s health professionals have stepped up, often at risk to themselves. I salute them all. 23)

- It is now nearly six weeks since the SKA HQ building was shut down as a response to the coronavirus pandemic. It is my expectation that the shutdown will continue for some weeks yet. Within the senior leadership of the SKA Organisation we are planning the eventual return to the office but will be following the advice of the UK government in making any decisions. Any and all decisions on a physical return will be taken ensuring the health and well-being of our staff and their families above all else.

- Thanks to some careful planning, an efficient IT team, robust technology and a digitally-savvy workforce, SKA staff have managed to rapidly settle into the new working environments and establish new working practices. As I am sure is the case all over the world, this has not come without issues, as our colleagues cope with families at home and isolation for those who live alone. We have had, for many years, a flexible work culture and this has come to the fore during the past few weeks. Our Human Resources team have been in contact with all lone workers to ensure they are managing, and we have set up systems whereby they can meet and socialise with their colleagues via videoconferencing.

- Some of our staff returned to their home countries prior to the shutdown to be with their families; they continue to work remotely, and we will work with them to plan their eventual return to SKA HQ.

- In the weeks since the lockdown commenced, we have had 7 new starters at SKAO. All have been inducted remotely and are fully incorporated in all SKA activities within their new teams. We look forward to the time when we can meet them in person and welcome them with a NAMASTE, the replacement for a handshake.

SKA_Auto3C

Figure 18: Public statement on the status of the SKA project (Philip Diamond, SKA Director-General)

- On the project side, we continue to progress well. We have had several positive milestones over the last four weeks and have been maintaining the strong momentum that was evident across all aspects of the project before the pandemic hit. Those key milestones are:

1) The System Critical Design Review, the meeting for which took place in December last year, was completed in early April, with all actions closed off except those few which, with the full agreement of the panel, require continued technical investigation of prototype systems. This has been a huge effort by all involved, both within the office and across our global partnership.

2) The external review of the SKA Operations Plan took place by video on 23-25 March; the panel’s very positive report was received shortly thereafter. We have accepted and are implementing all of their recommendations. There are no major issues, but some wise advice was provided in areas of budgetary contingency, lean staff levels in one or two areas, the complexity of managing an operation across three continents and the relationships with the proposed SKA Regional Centres.

3) The Cost Audit of the SKA1 construction plans was completed a week or so ago. This was conducted by Arup, a global engineering company. Again, the report was very positive with a range of extremely useful recommendations. These mainly focused on issues of detailed process and did not turn up any major concerns with regard to the cost estimates or the contingency estimation process.

4) On Monday 20th April, EPFL (the École Polytechnique Fédérale de Lausanne) joined the SKA Organisation, representing Switzerland; they are SKA’s 14th Our Swiss colleagues have, over the past 4 years, become increasingly engaged in SKA activities and we welcome them into the project.

5) On 21st April, we were pleased to hear that the legislation to progress the UK’s ratification of the SKA Observatory Convention was laid before the UK Parliament; this will now progress through the UK processes over the coming weeks.

- In addition to supporting these milestones, the SKAO staff are focusing on several areas, namely: developing the draft Construction Proposal, which will be ready for internal review shortly; further development of the procurement strategy; updating the Operations Plan and developing the broader 10-year plan for the Establishment and Delivery of the Observatory; engaging in the newly-established SRC working groups; drafting the business plan for 2021; preparing for the review of business-enabling functions; working on several different aspects related to the transition from the SKA Organisation to the SKA Observatory; working on the second Data Challenge; drafting the next version of Contact, developing the thinking around the future SKA Observatory brand and much more.

- I also would like to say that I am impressed at how the SKA community around the world has stepped up to assist during the COVID-19 crisis; from our colleagues in South Africa taking the lead on provision of ventilators at their government’s request; to work on contact tracing apps in Australia; supporting super-computing work on the virus and vaccines in many partners; and the provision of online educational resources by colleagues in India, Italy, the UK and elsewhere. I’m sure there are many more examples. These actions demonstrate the skillsets and experience such teams can bring to the table to assist at these critical times.

- As we look to the future, we are, with the full support of the Board and the SKA Observatory Council Preparatory Task Force (CPTF), the body preparing for the new governance structure under the treaty, planning for the establishment of the Observatory later this year and for the commencement of SKA1 construction activities as early in 2021 as possible. As is natural, we are undertaking planning for a range of possible scenarios with the intent of being able to respond appropriately and rapidly as the world emerges from this crisis. None of us can predict what the coming months will bring but, as one of the world’s major scientific endeavours, we hope to push forwards bringing employment, innovation and scientific exploration to benefit our partner countries.

• April 20, 2020: The Swiss science and technology university École Polytechnique Fédérale de Lausanne (EPFL) has become the 14th member of the SKA Organisation (SKAO) following a unanimous decision by the SKA Board of Directors. 24)

- EPFL will be the lead institution coordinating involvement in the SKA on behalf of the Swiss academic community. Note: The Swiss Academic Community includes Universities of Geneva, Zurich, Bern, ETHZ, CSCS, FHNW, HES-SO, and Verkehrshaus Lucern.

- “I am delighted to welcome EPFL to the SKA Organisation as our newest member,” said Chair of the SKA Board of Directors Dr Catherine Cesarsky. “This renowned research institution and its partners have brought valuable expertise to the SKA, and we look forward to working ever more closely with our Swiss colleagues as we enter this exciting phase of the project, completing the very last steps before construction.”

- At a national level, Switzerland has held observer status within the Organisation since 2016, with many Swiss research institutions and many industry partners contributing to various aspects of the SKA. The country has a history of world-class research and development in science and astronomy, including leading the recent CHEOPS mission to study exoplanets, developing world-leading instrumentation for the ESO telescopes in Chile, and being one of the hosts of the major international particle physics infrastructure CERN.

- Scientists at Swiss institutions are active in eight of the SKA’s science working groups, including those focusing on galaxy evolution, cosmology and cosmic magnetism.

- “This new high-performance radio telescope will open a new view of the whole Universe,” said Prof. Jean-Paul Kneib of EPFL, who is leading the consortium of Swiss scientists interested in the SKA. “SKA will allow us to address some key questions on our Universe, such as the nature of the dark matter and the dark energy, or explore the Cosmic Dawn, the period of time when the first stars and first galaxies formed.”

- The white paper Swiss Interests and Contribution to the SKA, published in February 2020, outlines the extensive Swiss involvement in SKA-related science and technology, and highlights national interest in contributing research and development in the fields of distributed radio frequency systems, high performance computing, machine learning and artificial intelligence. It also notes Swiss industry expertise in data processing, system control and supervision, antennas and radio receivers and precise time management through the use of maser atomic clocks.

- Annual Swiss SKA Days are now in their fifth year, bringing together national and international representatives of academia, industry and government, showcasing the breadth of opportunities for Swiss institutions and companies to be involved in the SKA. The location rotates each year to reflect the various contributions of different Swiss institutions. The next Swiss SKA day is due to be held at the University of Zürich later this year.

- EPFL is now a member of the SKAO, which has been responsible for overseeing the telescope design phase, until the process of transitioning into the SKA Observatory is completed. The Observatory is due to come into being in 2020. Switzerland’s Federal Council recently triggered the first political debate in parliament regarding the possible participation of Switzerland as a member state in the future.

- “As the dream of building SKA is about to become a reality, the State Secretariat for Education, Research and Innovation (SERI), welcomes and supports the EPFL decision to join the SKA Organisation as a special member. The accession of the EPFL will benefit to the Swiss scientific community as a whole and will open business perspectives to Swiss companies,” said Xavier Reymond, Deputy Director General for International Research Organisations at SERI, who is in charge of the relationship between Switzerland and SKAO.

- “Switzerland is the proud Seat of CERN and a dedicated member of the European Southern Observatory and of the European Space Agency. Therefore, we all look forward to assessing the opportunity to complement these intergovernmental endeavors with the upcoming SKA Observatory, which shares the same dedication to better understanding the Universe.”

- SKA Director-General Prof. Philip Diamond also welcomed EPFL to the SKAO, noting the importance of the country’s involvement so far. “Swiss institutions have been a vital part of the SKA’s design phase and bring with them a well-deserved reputation for excellence in science and astronomy, as well as being involved with some of today’s most exciting projects,” he said. “As we move ever closer to SKA construction, EPFL’s membership serves to highlight the broad range of expertise that the SKA can count upon in this next phase.”

SKA_Auto3B

Figure 19: The main EPFL campus in Lausanne sits on the shores of Lake Geneva (photo credit: Mediacom EPFL; CC BY-SA 4.0)

• April 9, 2020: The South African Department of Trade, Industry and Competition has tasked SARAO (South African Radio Astronomy Observatory) with managing the national effort required for the local design, development, production and procurement of respiratory ventilators to support the government’s response to combat the COVID-19 (coronavirus) pandemic. 25)

- SARAO has been mandated to manage the National Ventilator Project based on the experience it gained in the development of complex systems for the MeerKAT radio telescope, an SKA precursor facility.

- “We are happy and proud to lend our expertise developed in the context of MeerKAT and the SKA to fight this global pandemic and protect our country” said Dr. Rob Adam, Managing Director of SARAO.

- The South African government has called on companies and experts, particularly engineers and scientists, to come with innovative solutions to help combat the pandemic. In an effort to meet the anticipated demand for critical medical equipment such as ventilators, the Department of Trade, Industry and Competition is inviting companies and experts to express their interest in the design, development, production and procurement of ventilators in South Africa.

• February 5, 2020: Italy has become the second country to ratify the SKAO (SKA Observatory) Convention, the treaty which establishes the intergovernmental organization that will build and operate the SKA telescopes. 26)

- On Thursday 30th January, the Italian Senate passed the law that authorizes the President to ratify the Convention. In the text, Italy announced a financial commitment of 120 million euros over 10 years for the project.

- Italy led the multilateral negotiations on the text of the Convention, which was signed in Rome last year by seven countries: Australia, China, Italy, the Netherlands, Portugal, South Africa and the United Kingdom. The Convention will enter into force once five signatories, including the three hosts Australia, South Africa and the UK, have ratified the text. Italy becomes the second country to do so after The Netherlands last August.

- Italy’s National Institute of Astrophysics (INAF) has been coordinating Italian participation in the SKA.

- “INAF has been part of the project from its foundation with an indisputable contribution in terms of science, technological development and industrial participation,” says INAF President Nichi D’Amico. “Now the internal R&D activities within INAF are of fundamental importance, necessary to capitalize the return for the country of the government’s contribution to the Organization in terms of science, industry and development of innovative technologies.”

- Italian institutions and industry have been instrumental in the design phase of the SKA, particularly in prototyping work for the SKA’s low-frequency antennas. INAF is involved in a number of world-class radio astronomy facilities, including operating the 64m Sardinia Radio Telescope (SRT) and hosting one of the international LOFAR telescope stations. Italian researchers are involved in all 13 of the SKA’s Science Working Groups.

- “We’re seeing great momentum towards construction with the recent completion of our system engineering review and now the Italian ratification. It’s a great step towards establishing the SKA Observatory in the coming months” said SKA Director-General Prof. Philip Diamond.

December 19, 2019: An independent panel of external reviewers from major astronomy projects has given the SKA’s overall design, costing & planning the nod, clearing the way for the preparation of the SKA construction proposal. 27)

- After six years of work involving hundreds of engineers and scientists in 20 countries and close to 300 institutions around the world, the SKA’s overall system design – how all parts of the SKA work and interact with one another -, costing & planning has been endorsed by a panel of leading experts from ESO, NRAO, LSST, Gemini, NSF, Berkeley & Caltech universities, representing some of the biggest astronomical facilities in the world.

- “If you look at what has been achieved in the last few years it is really quite remarkable,” said Dr. Adrian Russell, Chair of the Review Panel from ESO “This year in particular there has been a huge push with [....] the design really coming to maturity. Certainly looking from the outside it is very, very impressive.”

- In November 2013, 12 international engineering consortia were created and tasked with designing the SKA. Nine of the consortia focused on the SKA’s core elements, while three others were tasked with developing advanced instrumentation. In late 2018 and 2019 consortia started going through their Critical Design Reviews (CDRs), during which the proposed design for each of these elements had to meet the project’s tough engineering requirements to be approved. The system review was the last major hurdle to be overcome before a construction proposal can be developed.

- “They have done a tremendous job of actually getting the consortia to the point where they are able to move forward with the actual construction,” said Dr. Alison Peck, member of the Review Panel from Gemini Observatory.

- As part of the design work, international teams have been engaged in building and testing prototypes on the SKA sites in South Africa and Australia, in order to make sure the design can cope with the harsh environment and meet the stringent radio frequency interference requirements on site. That work is ongoing as teams refine the design of the antennas based on lessons learned in the field.

- ‘The team has really been outstanding and I speak not only of the team here at the HQ but also the broader team from our member institutions,” said Dr. Joe McMullin, Program Director and Deputy Director-General of the SKA. “Having this milestone is really the foundation for everything in 2020. This is the year where we have to pull together the construction proposal itself.”

- Teams will now engage in final preparations ahead of construction, addressing recommendations from the panel. as the new intergovernmental organization that will oversee the procurement, construction and operation of the SKA starts operating.

- “We’ve gotten our wish. We get to continue to move forward on the project and it is fantastically exciting to see this observatory beginning to come together,” concluded Dr. McMullin.

Figure 20: SKA overview at CDR (Critical Design Review) — Exploring the universe with the world's largest radio telescope (video credit: SKA)

SKA_Auto3A

Figure 21: The SKA (Square Kilometer Array)

• On July 10, 2019, more than 200 guests had the pleasure to attend the ceremony for the official opening of the SKA Global Headquarters (HQs), located on the grounds of the historic Jodrell Bank Observatory and funded by the UK Government, Cheshire East Council and The University of Manchester. 28)

- Very nicely, the ceremony happened three days after the announcement of Jodrell Bank Observatory becoming one of the UNESCO World Heritage Site.

- The SKA Board members were invited to the event and had also the privilege to participate to a dedication ceremony, held in honor of the former SKA Board Chair (Prof. G. Bignami, 1944-2017), during which his widow (Dr. P. Caravero) named the SKA HQs auditorium “The Giovanni Fabrizio Bignami Council Chamber”.

- After the early July announcement of New Zealand winding down its involvement in the SKA by the end of 2020, on July 11, 2019, the SKAO Board members had the pleasure to note that Spain’s Ministry of Science, Innovation and Universities applied to upgrade from Associate Member to Special Member of SKA Organization, this status providing to Spain a greater access to the Company’s decision-making processes.

- In addition to the usual updates on progresses related to governance, science, engineering, operation and procurement matters, a review of the SKA Brand was presented by W. Garnier (Director of Communications Outreach and Education). The Board discussions saw also a policy session, including a report on the outcomes of recent CPTF meetings by the Council Chair (P. Kelly); the SKA Organization Board was informed that the SKA Observatory Convention is likely to enter into force by mid-2020. In the same session, progresses to develop a partnership model for operations of SKA-Mid in South Africa and SKA-Low in Australia, as well plans for the transition between the SKA Organization and the SKA Observatory, were presented by S. Berry (Director of Strategy) and T. Devaney (Head of Business Development and Change), respectively.

- Quick progresses are on-going on all sides of the project. P. Diamond (SKAO DG) reported that, from the human resources point of view, 34 new roles have been advertised in the last year, attracting nearly one thousand candidates. The full implementation of a new Enterprise Resource Planning (ERP) has started and will need to take place in the next 18 months, before the establishment of the SKA Observatory. To be recalled that new jobs are regularly updated at the SKAO Recruitment Portal. Prof. Diamond also informed the Board that the SKAO is fully engaged in initiatives lead by the International Telecommunication Union (ITU) in order to ensure that new generations of constellations of low Earth orbit satellites will not compromise future SKA scientific results.

- R. Braun (SKA Science Director) gave an overview of recent activities of his team, with particular emphasis on the good participation of the community to the last SKA Science meeting and on the publication of the results of the First Science Data Challenge. This was the first of a series of challenges and was intended to test source finding and classification tools on nine different images, sampling three different frequencies - 0.56, 1.4 and 9.2 GHz - and three different exposure times - 8, 100 and 1000 hours.

- J. McMullin (Program Director) provided an update of the pre-construction missions, consisting in delivering a Construction Proposal and an Operations Plan. Key dates are related to the Adoption Design Review (ADR) meetings during July and very early August (which will establish the complete set of documents detailing requirements, design, interfaces and plans) and, above all, to the System Critical Design Review (CDR). The full publication of its documentation is expected by mid-October 2019, for a System CDR meeting taking place from December 9 to 12, 2019. This very tight and ambitious schedule is intended to force to have a Construction Proposal ready to be submitted to the first SKA Observatory Council meeting, in mid-June 2020. Meanwhile, element CDRs are progressing (with the SDP consortium having formally closed out actions and the AIV consortium having recently announced to have completed its planning work) and, as reported by the Interim Director of Operations (A. Chrysostomou), operation workshops were held in Cape Town and Perth between February and March 2019. Very importantly, an updated version of the SKA cost book and work breakdown structure were presented to the Board by J. McMullin, while I. Hastings (Head of Procurement Services) presented an update of the “Hybrid Procurement Model”, consisting in a flexible approach, partly allocative and partly competitive.

- A. Russell (ESO), member of the Science And Engineering Advisory Committee (SEAC), presented the recommendation coming from the last face-to-face meeting (June 24-25, 2019) of this very important SKAO body, providing comments and useful inputs on the project status, the CDR developments (with particular attention the to SKA1-LOW telescope), the operation plan, and the SKA Regional Centers (SRC) organization work.

• 09 May 2019: An international group of scientists led by the University of Cambridge has finished designing the ‘brain’ of the Square Kilometer Array (SKA), the world’s largest radio telescope. When complete, the SKA will enable astronomers to monitor the sky in unprecedented detail and survey the entire sky much faster than any system currently in existence. 29)

- The SKA Science Data Processor (SDP) consortium has concluded its engineering design work, marking the end of five years’ work to design one of two supercomputers that will process the enormous amounts of data produced by the SKA’s telescopes.

- The SDP consortium, led by the University of Cambridge, has designed the elements that will together form the ‘brain’ of the SKA. SDP is the second stage of processing for the masses of digitized astronomical signals collected by the telescope’s receivers. In total, close to 40 institutions in 11 countries took part.

- The UK government, through the Science and Technology Facilities Council (STFC), has committed £100 m to the construction of the SKA and the SKA Headquarters, as its share as a core member of the project. The global headquarters of the SKA Organization are located in the UK at Jodrell Bank, home to the iconic Lovell Telescope.

- “It’s been a real pleasure to work with such an international team of experts, from radio astronomy but also the High-Performance Computing industry,” said Maurizio Miccolis, SDP’s Project Manager for the SKA Organization. “We’ve worked with almost every SKA country to make this happen, which goes to show how hard what we’re trying to do is.”

- The role of the consortium was to design the computing hardware platforms, software, and algorithms needed to process science data from the Central Signal Processor (CSP) into science data products.

- “SDP is where data becomes information,” said Rosie Bolton, Data Center Scientist for the SKA Organization. “This is where we start making sense of the data and produce detailed astronomical images of the sky.”

- To do this, SDP will need to ingest the data and move it through data reduction pipelines at staggering speeds, to then form data packages that will be copied and distributed to a global network of regional centers where it will be accessed by scientists around the world.

- SDP itself will be composed of two supercomputers, one located in Cape Town, South Africa and one in Perth, Australia.

- “We estimate SDP’s total compute power to be around 250 PFlops – that’s 25% faster than IBM’s Summit, the current fastest supercomputer in the world,” said Maurizio. “In total, up to 600 petabytes (600 x 1015 bytes) of data will be distributed around the world every year from SDP –enough to fill more than a million average laptops.”

- Additionally, because of the sheer quantity of data flowing into SDP: some 5 Tb/s, or 100,000 times faster than the projected global average broadband speed in 2022, it will need to make decisions on its own in almost realtime about what is noise and what is worthwhile data to keep.

- The team also designed SDP so that it can detect and remove manmade RFI (Radio Frequency Interference) – for example from satellites and other sources – from the data.

- “By pushing what’s technologically feasible and developing new software and architecture for our HPC (High-Performance Computing) needs, we also create opportunities to develop applications in other fields,” said Maurizio.

- High-Performance Computing plays an increasingly vital role in enabling research in fields such as weather forecasting, climate research, drug development and many others where cutting-edge modelling and simulations are essential.

- Professor Paul Alexander, Consortium Lead from Cambridge’s Cavendish Laboratory said: “I’d like to thank everyone involved in the consortium for their hard work over the years. Designing this supercomputer wouldn’t have been possible without such an international collaboration behind it.”

• 08 May 2019: The prestigious German research organization the Max Planck Society has become the 13th member of the SKA Organization, following a unanimous vote by the SKA Board of Directors at its recent meeting at the SKA Organization Global Headquarters in the UK. 30)

- The Max Planck Society thus joins the final phase of the SKA Organization, which is overseeing the telescope design phase, until the process of transitioning into the SKA Observatory, an intergovernmental organization established by treaty to manage the construction and operation of the SKA, is completed. Any further German engagement, through joining the SKA Observatory, remains to be decided and will be subject to future discussions.

- “I am delighted to welcome the Max Planck Society to the SKA Organization as our 13th member, a deserved recognition of the significant contributions Germany has made to the SKA project over the years, and particularly in this crucial pre-construction phase,” said Chairperson of the SKA Board of Directors Dr. Catherine Cesarsky.

- German research institutions and industry have been an intrinsic part of SKA-related projects since its earliest days, and have significant involvement in ongoing SKA design activities. In particular, the Max Planck Society provides instrumentation in the form of detectors, data acquisition and analysis systems for South Africa’s world-class MeerKAT telescope, an SKA precursor facility which will become part of SKA’s mid-frequency array (SKA-Mid).

- “I am extremely pleased to see our German colleagues consolidating their long-lasting involvement in SKA-related activities both at a scientific and industrial level”, added Prof. Philip Diamond, SKA Director-General. “Germany’s great wealth of expertise in radio astronomy, both in science and engineering, will continue to be invaluable as we move ever closer to SKA construction and operations.”

SKA_Auto39

Figure 22: Together with other German industries, MT Mechatronics of Mainz has developed the prototype elevation drive for the SKA-mid dishes(image credit: MTM)

- The Max Planck Society is a non-profit organization with 84 institutes and research facilities. In collaboration with other German institutions and industry, it has been involved across many areas of SKA design work, including within the Mid Frequency Dish Array, Low Frequency Aperture Array, Central Signal Processor, Science Data Processor, Telescope Manager, Signal and Data Transport consortia, and research and development work within the Phased Array Feeds and Wideband Single Pixel Feeds consortia.

- Among the Max Planck Society’s institutes is the Max Planck Institute for Radio Astronomy (MPIfR) a key player in the SKA’s Dish engineering consortium. Together with German industry partners, such as the telescope antenna specialists MT Mechatronics (MTM), and international partners, the Dish consortium is responsible for designing the SKA-Mid, to be deployed in South Africa. The Dish consortium has already delivered two prototype SKA dishes: SKA-P, which is currently being tested in China, and SKA-MPI (Max Planck Institute), funded by the Max Planck Society, which is under construction on the SKA site in South Africa’s Karoo region.

- “The SKA is a great opportunity for astronomers, engineers, physicists and data scientists. Besides becoming an amazing discovery machine, SKA pushes the boundaries of what is technically possible, especially in the handling and analysis of huge amounts of data. The Max Planck Society is in the middle of all these exciting science and technology developments, and we are pleased to now be able to contribute officially to the SKAO (SKA Organization) efforts”, says Prof Michael Kramer, director at the MPIfR, Bonn, Germany.

- The German science community has a long-held interest in the SKA project even beyond the radio astronomy field, as showcased in the 2012 German White Paper: Pathway to the Square Kilometre Array and in the “Denkschrift 2017: Perspektiven der Astrophysik in Deutschland 2017-2030“, which is the German equivalent to the US Decadal Survey. The German community is also heavily involved in the SKA’s Science Working Groups and Focus Groups and represented the third largest groups of authors in the 2000-page SKA Science Book: Advancing Astrophysics with the Square Kilometer Array, published in 2015.

- Germany has decades of experience in radio astronomy and is home to the Effelsberg 100 m Radio Telescope, the world’s second-largest fully steerable radio telescope, located near Bonn. In operation since 1972, the 100 m dish has been continuously upgraded, developing and testing also SKA technology as MPIfR’s flagship telescope. Germany also hosts six Low Frequency Array (LOFAR) stations, an SKA pathfinder facility which stretches across Europe.

SKA_Auto38

Figure 23: The Max Planck Society has funded a second SKA prototype dish, SKA-MPI, currently being constructed on site in South Africa, bringing together Chinese, Italian and German components [image credit: SARAO (South African Radio Astronomy Observatory)]

• 12 March 2019: Countries involved in the SKA (Square Kilometer Array) Project have come together in Rome, Italy, for the signature of the international treaty establishing the intergovernmental organization that will oversee the delivery of the world’s largest radio telescope. 31)

- Ministers, Ambassadors and other high-level representatives from over 15 countries have gathered in the Italian capital for the signature of the treaty which establishes the SKAO (Square Kilometer Array Observatory), the intergovernmental organization (IGO) tasked with delivering and operating the SKA.

SKA_Auto37

Figure 24: The initial signatories of the SKA Observatory Convention. From left to right: UK Ambassador to Italy Jill Morris, China’s Vice Minister of Science and Technology Jianguo Zhang, Portugal’s Minister for Science, Technology and Higher Education Manuel Heitor, Italian Minister of Education, Universities and Research Marco Bussetti, South Africa’s Minister of Science and Technology Mmamoloko Kubayi-Ngubane, the Netherlands Deputy Director of the Department for Science and Research Policy at the Ministry of Education, Culture and Science Oscar Delnooz, and Australia’s Ambassador to Italy Greg French (image credit: SKA Organization)

- “Today we are particularly honored to sign, right here at the Ministry of Education, University and Research, the Treaty for the establishment of the SKA Observatory” Italian Minister of Education Marco Bussetti who presided over the event, said. “A signature that comes after a long phase of negotiations, in which our country has played a leading role. The Rome Convention testifies the spirit of collaboration that scientific research triggers between countries and people around the world, because science speaks all the languages of the planet and its language connects the whole world. This Treaty – he added – is the moment that marks our present and our future history, the history of science and knowledge of the Universe. The SKA project is the icon of the increasingly strategic role that scientific research has taken on in contemporary society. Research is the engine of innovation and growth: knowledge translates into individual and collective well-being, both social and economic. Participating in the forefront of such an extensive and important international project is a great opportunity for the Italian scientific community, both for the contribution that our many excellencies can give and for sharing the big amount of data that SKA will collect and redistribute”

- Seven countries signed the treaty today, including Australia, China, Italy, The Netherlands, Portugal, South Africa and the United Kingdom. India and Sweden, who also took part in the multilateral negotiations to set up the SKA Observatory IGO, are following further internal processes before signing the treaty. Together, these countries will form the founding members of the new organization.

- Dr. Catherine Cesarsky, Chair of the SKA Board of Directors, added “Rome wasn’t built in a day. Likewise, designing, building and operating the world’s biggest telescope takes decades of efforts, expertise, innovation, perseverance, and global collaboration. Today we’ve laid the foundations that will enable us to make the SKA a reality.”

- The SKA will be the largest science facility on the planet, with infrastructure spread across three continents on both hemispheres. Its two networks of hundreds of dishes and thousands of antennas will be distributed over hundreds of kilometers in Australia and South Africa, with the Headquarters in the United Kingdom.

- Together with facilities like the James Webb Space Telescope, CERN’s Large Hadron Collider, the LIGO gravitational wave detector, the new generation of extremely large optical telescopes and the ITER fusion reactor, the SKA will be one of humanity’s cornerstone physics machines in the 21st century.

- Prof. Philip Diamond, Director-General of the SKA Organization which has led the design of the telescope added: “Like Galileo’s telescope in its time, the SKA will revolutionize how we understand the world around us and our place in it. Today’s historic signature shows a global commitment behind this vision, and opens up the door to generations of ground-breaking discoveries.”

- It will help address fundamental gaps in our understanding of the Universe, enabling astronomers from its participating countries to study gravitational waves and test Einstein’s theory of relativity in extreme environments, investigate the nature of the mysterious fast radio bursts, improve our understanding of the evolution of the Universe over billions of years, map hundreds of millions of galaxies and look for signs of life in the Universe.

- Two of the world’s fastest supercomputers will be needed to process the unprecedented amounts of data emanating from the telescopes, with some 600 petabytes (600 x 1015 Bytes) expected to be stored and distributed worldwide to the science community every year, or the equivalent of over half a million laptops worth of data.

- Close to 700 million euros worth of contracts for the construction of the SKA will start to be awarded from late 2020 to companies and providers in the SKA’s member countries, providing a substantial return on investment for those countries. Spinoffs are also expected to emerge from work to design and build the SKA, with start-ups already being created out of some of the design work and impact reaching far beyond astronomy.

- Over 1,000 engineers and scientists in 20 countries have been involved in designing the SKA over the past five years, with new research programs, educational initiatives and collaborations being created in various countries to train the next generation of scientists and engineers.

- Guests from Canada, France, Malta, New Zealand, the Republic of Korea, Spain and Switzerland were also in attendance to witness the signature and reaffirmed their strong interest in the project. They all confirmed they are making their best efforts to prepare the conditions for a future decision of participation of their respective country in the SKA Observatory.

- The signature concludes three and a half years of negotiations by government representatives and international lawyers, and kicks off the legislative process in the signing countries, which will see SKAO enter into force once five countries including all three hosts have ratified the treaty through their respective legislatures.

- SKAO becomes only the second intergovernmental organization dedicated to astronomy in the world, after ESO (European Southern Observatory).

• SKA Global Headquarters, 25 February 2019: The two engineering consortia tasked with designing all the essential infrastructure for the SKA sites in Australia and South Africa have formally concluded their work, bringing to a close nearly five years of collaboration both within and between the consortia. 32)

- Infrastructure Australia (INAU) and Infrastructure South Africa (INSA) were each led by institutions with great expertise in radio astronomy projects: Australia’s CSIRO, which designed, built and operates the SKA precursor telescope ASKAP at its Murchison Radio-astronomy Observatory (MRO); and the South African Radio Astronomy Observatory (SARAO), which designed, built and operates the SKA precursor telescope MeerKAT. Industry partners also played key roles in both consortia*, while the European Union’s Research and Innovation program Horizon 2020 awarded an additional €5M to conduct further work at both sites and at the SKA Global Headquarters in the UK.

Note*: Infrastructure Australia consortium members included the Commonwealth Scientific and Industrial Research Organization (CSIRO), Aurecon Australia and Rider Levett Bucknall. Infrastructure South Africa consortium members included the South African Radio Astronomy Observatory (SARAO), Aurecon South Africa and HHO Africa.

- The consortia were responsible for designing everything required to be able to deploy and operate the SKA in its two host countries, from roads, buildings, power, to RFI shielding, water and sanitation. Both CSIRO and SARAO developed valuable expertise from delivering the two precursor telescopes, which they applied to their work designing the SKA’s site infrastructure.

- “This is the culmination of many years of development on both sites in preparation for the start of construction of the SKA,” says Gary Davis, the SKA’s Director of Operations Planning and chair of the review panel. “Both consortia have done a stellar job in collaboration with one another to design the crucial infrastructure that’ll support the SKA.”

- A major goal of the two consortia was to collaborate with each other in order to develop a common engineering approach, share knowledge and provide lessons learnt through the design and delivery of SKA precursors.

- “From the start we developed what we called the GIG, the good ideas group” says Ant Schinckel, Infrastructure Australia’s Consortium Lead. “Our engineers would continuously engage with each other to discuss issues in both countries and find common solutions that could be applied to both sites” complements Tracy Cheetham, Infrastructure South Africa’s Consortium Lead.

- “I’d like to thank both teams for their excellent work” said Martin Austin, the SKA’s Infrastructure Project Manager “The quality of the design and their approach to safety means that we can now carry this work forward with a high degree of confidence, supported by both CSIRO and SARAO and their industry partners.”

- INAU and INSA formed part of a global effort by 12 international engineering consortia, representing 500 engineers and scientists in 20 countries. Nine of the consortia focused on the SKA’s core elements, while three others were tasked with developing advanced instrumentation.

- In 2018 and 2019 the nine consortia are having their Critical Design Reviews (CDRs), during which the proposed design must meet the project’s tough engineering requirements to be approved, before a construction proposal for the SKA can be developed.

- In June and July 2018, both infrastructure consortia had successful CDRs and subsequently made the final refinements to their designs. With that work complete the consortia now formally disband, although the SKA will continue to work closely with former members in the months ahead as the overall System CDR approaches, to ensure that the infrastructure design aligns with all of the other components.

SKA_Auto36

Figure 25: SKA’s Infrastructure consortia completed their detailed design work for the SKA sites in 2018 (image credit: SKA Organization)

Figure 26: The Square Kilometer Array is an ambitious project to create a gigantic telescope from two enormous arrays of smaller antennas located in South Africa and Australia. The huge collecting area of the SKA will give it unprecedented sensitivity, enabling it to search for faint signals from far away sources. For SETI, it will be able to detect civilizations on other planets orbiting other stars, even if they are no more technologically advanced than our own civilization, and are not deliberately messaging us. — In this video, we sit down with some of the scientists and engineers who are spearheading the SKA project, at the SKA headquarters in Jodrell Bank, near Manchester, England (video credit: BerkeleySETI, Published on Aug 2, 2018)

• SKA Global Headquarters, 20 February 2019: The international Central Signal Processor (CSP) consortium has concluded its design work on the SKA, marking the end of five years’ work comprised of 11 signatory members from 8 countries with more than 10 additional participating organizations. 33)

SKA_Auto35

Figure 27: Members of the Central Signal Processor consortium at SKA Global Headquarters during the Critical Design Review in September 2018 (image credit: SKA Organization)

- The consortium, led by the National Research Council of Canada (NRC)*, has designed the elements that will together form the “processing heart” of the SKA. The CSP is the first stage of processing for the masses of digitized astronomical signals collected by the telescope’s receivers. It’s where the correlation and beamforming takes place to make sense of the jumble of signals, before the data is sent onwards to the Science Data Processor. At that stage, the data is ready to be turned into detailed astronomical images of the sky.

Note*: The CSP Consortium Project Management Office was led by a collaboration between the NRC and MDA, a contracted industry partner. Active consortium members (signatories) at the conclusion of the work included: Netherlands Institute for Radio Astronomy (ASTRON), Commonwealth Scientific and Industrial Research Organization (CSIRO) (Australia), Swinburne University of Technology (Australia), Max Planck Institute for Radio Astronomy (Germany), National Institute for Astrophysics (INAF) (Italy), New Zealand Alliance (AUT University, Massey University, University of Auckland, Compucon New Zealand and Open Parallel Ltd.), the Science and Technology Facilities Council (STFC) (UK), University of Manchester (UK), and University of Oxford (UK).

Figure 28: First impressions gathered after the Critical Design Review for the SKA's Central Signal Processor at the SKA's Global Headquarters in the UK (video credit: SKA Organization, published on 4 October 2018)

- The CSP includes the Pulsar Search and Timing sub-elements, which enable astronomers to detect and characterize pulsars and fast transients. This will facilitate the most comprehensive and ambitious survey yet to detect all pulsars in our own galaxy as well as the first extragalactic pulsars. The Pulsar Search sub-element is based on a hybrid architecture of Graphics Processing Units (GPUs) and Field Programmable Gate Arrays (FPGA) computing boards. The design team was led by the University of Manchester (UK), University of Oxford (UK) and the Max Planck Institute for Radio Astronomy (Germany) supported by input from INAF (Italy), New Zealand Alliance, STFC ATC Edinburgh (UK), and ASTRON (the Netherlands). The Pulsar Timing sub-element is based on GPUs. The design team consisted of participants from Swinburne University of Technology (Australia) and the New Zealand Alliance.

SKA_Auto34

Figure 29: Low CBF (Correlation and Beam Forming) liquid-cooled Perentie Gemini Processing Board (left), Mid CBF Air-cooled TALON-DX Processing Board (right), image credit: SKA Organization

- As part of their work, the consortium designed the FPGA computing boards that will perform correlation and beamforming (CBF) on the signals from the SKA. The CBF for the SKA-mid telescope -to be located in South Africa- is based on Intel FPGA technology and was led by the NRC with support from MDA, a Maxar Technologies company, AUT University (New Zealand), and INAF. The CBF for the SKA-low telescope -to be located in Australia- is based on Xilinx technology, was led by CSIRO with support from ASTRON and AUT University. Hundreds of these boards are required to meet the demanding processing requirements.

- The Local Monitoring and Control sub-element was led by the NRC with contributions from MDA, INAF, and NCRA (India).

- The consortium was given a full pass by the review panel during the CSP Critical Design Review (CDR) in September, the first SKA engineering consortium to receive this result. With very few actions required following the review, the consortium has now concluded its work.

- “This is an extremely complex system – it has to process as many bits every 15 seconds as all the bits that are flowing through the global internet today,” said Consortium Lead Luc Simard of the NRC. “That’s a huge processing challenge at a site with limited electrical power and cooling power, and we have to fit a lot of hardware in a tight, restricted environment. To meet this challenge we needed a team of the highest quality – we have the best of the best and working with them has been a real honor. I’m really thankful for all their work.”

- The consortium was formed in late 2013 as one of 12 international engineering consortia tasked with designing the SKA, a global effort representing 500 engineers in 20 countries. Nine consortia focused on core elements, while three developed advanced instrumentation for the telescope. The nine consortia are now at CDR stage, where an expert panel examines each design proposal against the SKA’s stringent requirements.

- The consortium was formed in late 2013 as one of 12 international engineering consortia tasked with designing the SKA, a global effort representing 500 engineers in 20 countries. Nine consortia focused on core elements, while three developed advanced instrumentation for the telescope. The nine consortia are now at CDR stage, where an expert panel examines each design proposal against the SKA’s stringent requirements.

- Now that its work is complete the consortium formally disbands, although the SKA Organization will work closely with participating countries to prepare for the overall System CDR and the development of the SKA construction proposal.

- “What made the design challenge so difficult are the exacting requirements for a telescope to deliver SKA telescope transformational science,” said Philip Gibbs, SKA Organization Project Manager for CSP. “The system has to meet observing requirements that may include imaging, as well as VLBI, and pulsar search and timing, all at the same time. As well as the power and space issues on site, we’ve naturally also been constrained by the cost involved in providing a solution.”

- “To reach this point is a testament to the tremendous effort of all the institutions involved in designing CSP – my heartfelt thanks go to them. We look forward to continued collaboration as we progress down the road towards construction of the SKA.”




Australia Antenna Array

Under the joint hosting arrangements, Australia will host the SKA’s low frequency aperture array antennas. 34)

In Phase 1, Australia will host over one hundred thousand antennas (each about 2 meters in height) covering low frequency radio waves, to be expanded to up to a million antennas in Phase 2. This array will conduct research into one of the most interesting periods of the Universe, looking back to the first billion years of the Universe to look at the formation of the first stars and galaxies, providing valuable insight into dark matter and dark energy and the evolution of the Universe.

It will provide an increased capability over existing infrastructure at the same frequencies, providing 25% better resolution and being 8 times more sensitive than LOFAR ( Low-Frequency Array) radio telescope, the current best such instrument. Moreover, it will be able to scan the sky 135 times faster. The sheer amount of raw data produced by all these antennas will be equivalent to five times the internet traffic.

ASKAP (Australian Square Kilometer Array Pathfinder) is CSIRO’s (Commonwealth Scientific and Industrial Research Organization) radio telescope currently being commissioned at the Murchison Radio-astronomy Observatory (MRO) in Western Australia. Another important precursor for the SKA located in that region is the MWA (Murchison Widefield Array) 35) 36)

The MRO location is in a remote outback region about 350 km northeast from Geraldton in Western Australia. This follows the signing of an Indigenous Land Use Agreement (ILUA) with the Wajarri Yamatji Claimant Group. This region is ideal for a new radio observatory because the population density is very low and there is a lack of man-made radio signals that would otherwise interfere with weak astronomical signals.

Construction of ASKAP began in early 2010, and all 36 antennas, as well as site infrastructure, were completed in mid-2012. ASKAP is currently undergoing the fit-out of its complex PAF receiver systems and electronics, as well as commissioning.

SKA_Auto33

Figure 30: The core of the Australian SKA activity is located at CSIRO's Murchison Radio-astronomy Observatory (MRO), and surrounding Mid West Radio-Quiet Zone in Western Australia. The MRO is already home to the ASKAP telescope, as well as another of the SKA precursors, the Murchison Widefield Array (MWA), image credit: ATNF

As part of SKA pre-construction, CSIRO is taking a lead role in a number of R&D consortia involved in the design and validation process of the SKA, including ‘Dish’, ‘Infrastructure-Australia’ and ‘Assembly, Integration and Verification’. The CSIRO SKA Center has also been established to coordinate and guide SKA activities within the organization.

Australia’s existing 36 dish ASKAP telescope , each 12 m in diameter, is conducting groundbreaking research into new promising technologies for the SKA. Equipped with PAF (Phased Array Feed) technology, it will be able to survey large areas of the sky in great detail. The PAF for ASKAP provides the antenna with a wide FOV (Field of View) by creating 30 separate (simultaneous) beams to give a FOV of 30 º x 30º (the width of your little finger at arms length is around 1º), speeding up survey time quite considerably. 37)

ASKAP's rapid survey capability makes it one of the world’s fastest survey radio telescopes. The PAF receivers have been specifically developed for ASKAP by CSIRO and this is the first time this type of technology has been used in radio astronomy. Traditional radio telescopes are good at providing a detailed view of a distant object. However, what astronomers often want is to study large volumes of space at once. With a traditional radio telescope, we can only do this by painstakingly looking in lots of different directions at different times. ASKAP can image (in 3D) large areas all at once, with much greater sensitivity than previous all-sky surveys. ASKAP has also been designed to be extremely fast - it will be able to detect millions of radio sources in a matter of days, opening new fields of research.

In addition to being a world-leading telescope in its own right, ASKAP is an important technology demonstrator for the SKA. ASKAP’s home, the Murchison Radio-astronomy Observatory site will be the central site for major components of SKA telescope infrastructure in Australia.

SKA_Auto32

Figure 31: ASKAP’s ‘field of view’ is depicted showing the 36 beams as individual circles. We get all of this in one go. By comparison, the field of view of a traditional telescope would be a single slightly smaller circle. The moon diameter is half the diameter of one of these circles (image credit:ATNF)

ASKAP specifications:

• Total collecting area of 4,000 m2, from 36 antennas, each 12 m in diameter

• System temperature less than 50 K

• Frequency range from 700 MHz to 1.8 GHz

• 300 MHz instantaneous bandwidth

• 36 independent beams, each of about 1º x 1º, yield overlapping to a 30º x 30º field-of-view at 1.4 GHz

• 6 km maximum baseline

• Full cross-correlation of all antennas

• Remote array station capability located in NSW, approximately 3,000 km from the core site.

SKA_Auto31

Figure 32: Antennas of CSIRO’s Australian SKA Pathfinder at the Murchison Radioastronomy Observatory in Western Australia (image credit: CSIRO, Steve Barker)

SKA_Auto30

Figure 33: A phased array feed (PAF) receiver installed on an ASKAP antenna at the Murchison Radioastronomy Observatory (image credit: CSIRO, Barry Turner)


LFAA (Low Frequency Aperture Array)

The LFAA Element, a work package executed by the AADC (Aperture Array Design & Construction) Consortium, is one of the elements of the SKA1-LOW telescope and is defined as the antenna array stations, including the station signal processing, control and calibration. The work is set out in the Statement of Work agreed with the SKAO. 38)

The AADC Consortium team started working together in 2010 with a specific focus on SKA-LOW. Longer connections go back to SKADS, an EU FP6 project which started in 2005. The formation of the Consortium was therefore based on previous work and groups, which made it possible to move quickly to the actual realization and testing of prototypes. In particular Aperture Array Verification System 0.5 (AAVS0.5), was installed at the Murchison Radio Observatory as early as May 2013. This system has proven to be very valuable already (The initial LFAA specification sought to define an array capable of operating from 70-450 MHz).

The three SKA low-frequency pathfinders and precursor telescopes, LOFAR, NenuFAR and MWA, have been designed and realized and are currently operated by members of the AADC Consortium. The experience and knowledge gained is directly available for LFAA. Furthermore both LOFAR and MWA can be used as a test bed for new LFAA technology, this has already been proven to be very effective, most notably in the case of AAVS0.5 and MWA.

November 1st, 2013 marks the start of Stage 1 of the SKA1 preconstruction phase, to be finished in March 2015. The Preliminary Design Review (PDR) is a crucial milestone at the completion of Stage 1. As well as the design documents for PDR, intermediate deliverables have been generated and accepted. By the end of January, the AADC Consortium successfully passed its PDR!

In March 2015 the SKA members decided that SKA1-Low in Australia should be built. 50% of the planned 262,144 low frequency dipoles should be deployed. The array should cover the frequency range 50-350 MHz, as planned. The current planned baseline lengths of ~80km should be retained. The inclusion of a pulsar search capability for SKA1-Low (currently an Engineering Change Proposal on hold) should be actively explored.

The LFAA will be located in Australia, primarily in Western Australia. Observing frequencies in the 50- 350 MHz region, SKA-low will probe 13 billion years back in time to the period when the first stars and galaxies began to form. Phase 1 of SKA-low will deploy roughly 250,000 identical antennas and amplifiers. The array will be supported by local processing technology to combine the individual signals and transport them to the final supercomputing facility that will conduct final data processing and storage. 39)

The antennas have been designed to minimize cost and maximize ease of deployment and reliability in the remote environment. The core of the array will be tightly packed, with 75% of antennas located within a 2 km radius (at approximately 1.5m separation). The remaining antennas will form spiral arms spanning about 50 km to enhance final image detail.

SKA_Auto2F

Figure 34: An artist impression of the low frequency antennas in Australia with the ASKAP telescope in the background (image credit: CSIRO)



ASKAP (Australian Square Kilometer Array Pathfinder) development and mission status

• December 23, 2021: Astronomers have produced the most comprehensive image of radio emission from the nearest actively feeding supermassive black hole to Earth. 40)

- The emission is powered by a central black hole in the galaxy Centaurus A, about 12 million light years away.

SKA_Auto2E

Figure 35: Centaurus A is a giant elliptical active galaxy 12 million light-years away. At its heart lies a black hole with a mass of 55 million suns. This image shows the galaxy at radio wavelengths, revealing vast lobes of plasma that reach far beyond the visible galaxy, which occupies only a small patch at the centre of the image. The dots in the background are not stars, but radio galaxies much like Centaurus A, at far greater distances (image credit: Ben McKinley, ICRAR (International Centre for Radio Astronomy Research) West Australia / Curtin University and Connor Matherne, Louisiana State University)

SKA_Auto2D

Figure 36: Tile 107, or “the Outlier” as it is known, is one of 256 tiles of the MWA located 1.5 km from the core of the telescope. The MWA is a precursor instrument to the SKA (Photographed by Pete Wheeler, ICRAR)

- As the black hole feeds on in-falling gas, it ejects material at near light-speed, causing ‘radio bubbles’ to grow over hundreds of millions of years.

- When viewed from Earth, the eruption from Centaurus A now extends eight degrees across the sky—the length of 16 full Moons laid side by side.

- It was captured using the Murchison Widefield Array (MWA) telescope in outback Western Australia.

- The research was published today in the journal Nature Astronomy. 41)

- Lead author Dr Benjamin McKinley, from the Curtin University node of the International Centre for Radio Astronomy Research (ICRAR), said the image reveals spectacular new details of the radio emission from the galaxy.

- “These radio waves come from material being sucked into the supermassive black hole in the middle of the galaxy,” he said.

- “It forms a disc around the black hole, and as the matter gets ripped apart going close to the black hole, powerful jets form on either side of the disc, ejecting most of the material back out into space, to distances of probably more than a million light years.

- “Previous radio observations could not handle the extreme brightness of the jets and details of the larger area surrounding the galaxy were distorted, but our new image overcomes these limitations.”

- Centaurus A is the closest radio galaxy to our own Milky Way.

- “We can learn a lot from Centaurus A in particular, just because it is so close and we can see it in such detail,” Dr McKinley said.

- “Not just at radio wavelengths, but at all other wavelengths of light as well.

- “In this research we’ve been able to combine the radio observations with optical and x-ray data, to help us better understand the physics of these supermassive black holes.”

- Astrophysicist Dr Massimo Gaspari, from Italy’s National Institute for Astrophysics, said the study corroborated a novel theory known as ‘Chaotic Cold Accretion’ (CCA), which is emerging in different fields.

- “In this model, clouds of cold gas condense in the galactic halo and rain down onto the central regions, feeding the supermassive black hole,” he said.

- “Triggered by this rain, the black hole vigorously reacts by launching energy back via radio jets that inflate the spectacular lobes we see in the MWA image. This study is one of the first to probe in such detail the multiphase CCA ‘weather’ over the full range of scales”, Dr Gaspari concluded.

- Dr McKinley said the galaxy appears brighter in the centre where it is more active and there is a lot of energy.

- “Then it’s fainter as you go out because the energy’s been lost and things have settled down,” he said.

- “But there are interesting features where charged particles have re-accelerated and are interacting with strong magnetic fields.”

- MWA director Professor Steven Tingay said the research was possible because of the telescope’s extremely wide field-of-view, superb radio-quiet location, and excellent sensitivity.

- “The MWA is a precursor for the Square Kilometre Array (SKA)—a global initiative to build the world’s largest radio telescopes in Western Australia and South Africa,” he said.

- “The wide field of view and, as a consequence, the extraordinary amount of data we can collect, means that the discovery potential of every MWA observation is very high. This provides a fantastic step toward the even bigger SKA.”

SKA_Auto2C

Figure 37: Centaurus A is a giant elliptical active galaxy 12 million light-years away. At its heart lies a black hole with a mass of 55 million suns. This composite image shows the galaxy and the surrounding intergalactic space at several different wavelengths. The radio plasma is displayed in blue and appears to be interacting with hot X-ray emitting gas (orange) and cold neutral hydrogen (purple). Clouds emitting Halpha (red) are also shown above the main optical part of the galaxy which lies in between the two brightest radio blobs. The ‘background’ is at optical wavelengths, showing stars in our own Milky Way that are actually in the foreground [image credit: Connor Matherne, Louisiana State University (Optical/Halpha), Kraft et al. (X-ray), Struve et al. (HI), Ben McKinley, ICRAR/Curtin. (Radio)]

SKA_Auto2B

Figure 38: Composite image of the SKA-Low telescope in Western Australia. The image blends a real photo (on the left) of the SKA-Low prototype station AAVS2.0 which is already on-site, with an artist’s impression of the future SKA-Low stations as they will look when constructed. These dipole antennas, which will number in their hundreds of thousands, will survey the radio sky at frequencies as low as 50MHz (image credit: ICRAR, SKAO)

- The MWA (Murchison Widefield Array) is managed and operated by Curtin University on behalf of an international consortium, and is located on the Murchison Radio-astronomy Observatory in Western Australia. The observatory is managed by CSIRO, Australia’s national science agency, and was established with the support of the Australian and Western Australian Governments. We acknowledge the Wajarri Yamatji as the traditional owners of the observatory site.

- The Pawsey Supercomputing Research Centre in Perth–a Tier 1 publicly funded national supercomputing facility–helped store and process the MWA observations used in this research.

• August 19, 2021: Scientists have measured thousands of nearby stars and far away galaxies that have never been identified before at radio wavelengths, while studying a galactic body that neighbors our own Milky Way galaxy—the Large Magellanic Cloud (LMC). 42) 43)

- Led by Keele University (UK) Ph.D. student Clara M. Pennock and Reader in Astrophysics, Dr. Jacco van Loon, the international team of researchers used the Australian Square Kilometer Array Pathfinder (ASKAP) telescope to "photograph" the Cloud at radio wavelengths and study the stellar structures within, taking some of the sharpest radio images of the Cloud ever recorded.

- The Large Magellanic Cloud is a galaxy which borders our own, the Milky Way, and is known as a satellite dwarf spiral galaxy. It is around 158,200 light years away from Earth and is home to tens of millions of stars.

- Due to its proximity to the Milky Way, it provides an excellent benchmark for researchers studying fundamental questions, such as how stars form and how galaxies are structured.

- The researchers not only took the sharpest radio images of the Cloud ever recorded, but during their analysis they also studied the stars themselves which form the cloud's structure, including the Tarantula Nebula, the most active star-formation region in the Local Group. Furthermore, newly detected radio emission has also been studied from distant galaxies in the background as well as stars in the foreground from our own Milky Way.

- This study, published in Monthly Notices of the Royal Astronomical Society, forms part of the Evolutionary Map of the Universe (EMU) Early Science Project, which will observe the entire Southern sky and is predicted to detect around 40 million galaxies. The data will ultimately be used to give researchers a clearer picture of how galaxies, and their stars, have evolved throughout time.

- Lead author Clara Pennock from Keele University said: "The sharp and sensitive new image reveals thousands of radio sources we've never seen before. Most of these are actually galaxies millions or even billions of light years beyond the Large Magellanic Cloud. We typically see them because of the supermassive black holes in their centers which can be detected at all wavelengths, especially radio. But we now also start finding many galaxies in which stars are forming at a tremendous rate. Combining this data with previous observations from X-ray, optical and infrared telescopes will allow us to explore these galaxies in extraordinary detail."

- Dr. Jacco van Loon, Reader in Astrophysics at Keele University said: "With so many stars and nebulae packed together, the increased sharpness of the image has been instrumental in discovering radio emitting stars and compact nebulae in the LMC. We see all sorts of radio sources, from individual fledgling stars to planetary nebulae that result from the death of stars like the Sun."

- Co-author Professor Andrew Hopkins, from Macquarie University in Sydney, Australia, and leader of the EMU (Evolutionary Map of the Universe) survey, added: "It's gratifying to see these exciting results coming from the early EMU observations. EMU is an incredibly ambitious project with scientific goals that range from understanding star and galaxy evolution to cosmological measurements of dark matter and dark energy, and much more. The discoveries from this early work demonstrate the power of the ASKAP telescope to deliver sensitive images over wide areas of sky, offering a tantalizing glimpse of what the full EMU survey may reveal. This investigation has been critical in allowing us to design the main survey, which we expect will start in early 2022."

- ASKAP is owned by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). ASKAP is an array of 36 dish antennas with a largest separation of six kilometers, which when combined act like a telescope that is about 4000 square meters in size.

- ASKAP employs a novel technique called phased array feeds (PAF), and each of the 36 antennas has a PAF that allow the telescope to look at the sky in 36 directions at once, increasing the amount of sky that can be observed at once to 30 square degrees on the sky and thus, increasing survey speed.

- ASKAP is a precursor to the SKA, the world's largest radio telescope, which is currently being built in South Africa and Australia, and is headquartered at the Jodrell Bank Observatory near Manchester, UK.

SKA_Auto2A

Figure 39: Never-before-seen radio waves detected in the LMC (Large Magellan Cloud), image credit: Keele University

• April 21, 2021: Astronomers have discovered a pulsar—a dense and rapidly spinning neutron star sending radio waves into the cosmos—using a low-frequency radio telescope in outback Australia. The pulsar was detected with the Murchison Widefield Array (MWA) telescope, in Western Australia’s remote Mid West region. 44)

SKA_Auto29

Figure 40: Tile 107, or “the Outlier” as it is known, is one of 256 tiles of the MWA located 1.5km from the core of the telescope. The MWA is a precursor instrument to the SKA (photographed by Pete Wheeler, ICRAR)

- It’s the first time scientists have discovered a pulsar with the MWA but they believe it will be the first of many.

- The finding is a sign of things to come from the multi-billion-dollar Square Kilometer Array (SKA) telescope. The MWA is a precursor telescope for the SKA.

- Nick Swainston, a PhD student at the Curtin University node of the International Centre for Radio Astronomy Research (ICRAR), made the discovery while processing data collected as part of an ongoing pulsar survey. ICRAR is a joint venture between Curtin University and The University of Western Australia with support and funding from the State Government of Western Australia.

- “Pulsars are born as a result of supernovae—when a massive star explodes and dies, it can leave behind a collapsed core known as a neutron star,” he said. “They’re about one and a half times the mass of the Sun, but all squeezed within only 20 km, and they have ultra-strong magnetic fields.”

- Mr Swainston said pulsars spin rapidly and emit electromagnetic radiation from their magnetic poles.

- “Every time that emission sweeps across our line of sight, we see a pulse—that’s why we call them pulsars,” he said. “You can imagine it like a giant cosmic lighthouse.”

Figure 41: Radio wave emission from a pulsar. Neutron Stars, Pulsars, and Magnetars are the most extreme objects in the Universe that aren't Black Holes. Their extreme densities make neutron stars the densest solid bodies in the Universe ultra-powerful magnetic fields (video credit: ICRAR)

- ICRAR-Curtin astronomer Dr Ramesh Bhat said the newly discovered pulsar is located more than 3000 light-years from Earth and spins about once every second.

- “That’s incredibly fast compared to regular stars and planets,” he said. “But in the world of pulsars, it’s pretty normal.”

- Dr Bhat said the finding was made using about one per cent of the large volume of data collected for the pulsar survey.

- “We’ve only scratched the surface,” he said. “When we do this project at full-scale, we should find hundreds of pulsars in the coming years.”

- Pulsars are used by astronomers for several applications including testing the laws of physics under extreme conditions.

- “A spoonful of material from a neutron star would weigh millions of tons,” Dr Bhat said. “Their magnetic fields are some of the strongest in the Universe—about 1000 billion times stronger than that we have on Earth.”

- “So we can use them to do physics that we can’t do in any of the Earth-based laboratories.”

- Finding pulsars and using them for extreme physics is also a key science driver for the SKA telescope.

- MWA Director Professor Steven Tingay said the discovery hints at a large population of pulsars awaiting discovery in the Southern Hemisphere.

- “This finding is really exciting because the data processing is incredibly challenging, and the results show the potential for us to discover many more pulsars with the MWA and the low-frequency part of the SKA.”

- “The study of pulsars is one of the headline areas of science for the multi-billion-dollar SKA, so it is great that our team is at the forefront of this work,” he said. 45)

SKA_Auto28

Figure 42: An artist’s impression of Pulsar — a dense and rapidly spinning neutron star sending radio waves into the cosmos (image credit: ICRAR / Curtin University)

• December 16, 2020: Australian researchers from Western Sydney University, Macquarie University, and Australia's national science agency, CSIRO, have contributed to the first observation of a gas filament with a length of 50 million light years - confirming current 'big bang' ideas about the origin and evolution of the Universe. 46)

- New research published today in the journal Astronomy & Astrophysics describes the discovery of the longest gas filament yet seen. At 50 million light years long, this thread of hot gas stretches between two vast clusters of galaxies that are in the process of merging together. This discovery strikingly resembles predictions from computer simulations about how structure in the Universe should appear and confirms the understanding of the way the Universe has evolved. 47)

- This study used data from the eROSITA space telescope and CSIRO’s ASKAP radio telescope in Western Australia. The x-ray measurements from eROSITA are sensitive to the hot gas present in the galaxy clusters, while the ASKAP radio data pick out emission associated with galaxies and arising from extended energetic jets powered by supermassive black holes within those galaxies. Combining the data from both facilities allows a unique perspective on the complex interplay between gas and galaxies in this system of merging galaxy clusters.

- For many years we have known about the relationship between gas in galaxy clusters and the way the galaxies themselves influence and are influenced by such hot gas. In particular, the radio jets from galaxies with supermassive black holes are known to be able to push the hot gas within a cluster aside as they shoot out into space. The novel discovery with these latest observations arises from the unique nature of the extended hot gas filament. These kinds of structure have been predicted in the best current models of the Universe, but this is the first time such a clear example has been discovered.

- The ASKAP telescope was able to image the entire merging cluster system in a single exposure due to the extremely large field of view of its Phased Array Feed (PAF) technology. The highly sensitive radio image spanning the entirety of this complex galaxy system has enabled the identification of many extended radio structures, associated with supermassive black holes. The way this extended radio emission is distorted in the comparatively dense cluster gas as these galaxies fall into the clusters helps to identify which way they are moving and in turn trace the gravitational influence of the complex cluster pair. This information adds evidence for the way such structures evolve, in support of the underlying model of the Universe.

- Almost 50 scientists from institutions in Germany, Australia, the USA, Switzerland, Chile, Spain, South Africa and Japan participated in the study, led by Prof. Thomas Reiprech at the University of Bonn. The eROSITA telescope is a joint German-Russian facility, developed with funding from the Max Planck Society and the German Aerospace Center (DLR), and launched into space last year on board a Russian-German satellite whose construction was supported by the Russian space agency Roskosmos. The ASKAP telescope was developed by CSIRO and is sited at the Murchison Radio Observatory in Western Australia. Its novel PAF technology enables it to rapidly deliver extremely sensitive radio images over large areas of the sky.

- The ASKAP measurements in this investigation were taken as part of the "early science observations" for a project called the Evolutionary Map of the Universe, also known as ‘EMU’, one of nine major survey programs planned with ASKAP. EMU is an international collaboration of over 400 scientists, led by Professor Andrew Hopkins at Macquarie University, who participated in this study. The success of these preliminary observations is a positive sign for the full project, expected to start in late 2021, which will map the entire Southern Hemisphere, an area about 1000 times as large as covered here, and with even better sensitivity.

SKA_Auto27

Figure 43: Optical image of the Abell 3391/95 system taken with the DECam camera. Superimposed are the eROSITA image (darker = higher gas density) and radio contours (yellow) of the ASKAP telescope (image credit: © Reiprich et al., Astronomy & Astrophysics)

• December 1, 2020: ASKAP, developed and operated by Australia’s national science agency, CSIRO, mapped approximately three million galaxies in just 300 hours. 48)

- The Rapid ASKAP Continuum Survey (RACS) is like a Google map of the Universe where most of the millions of star-like points on the map are distant galaxies – about a million of which we’ve never seen before.

- CSIRO Chief Executive Dr Larry Marshall said ASKAP brought together world-class infrastructure with scientific and engineering expertise to unlock the deepest secrets of the Universe.

- “ASKAP is applying the very latest in science and technology to age-old questions about the mysteries of the Universe and equipping astronomers around the world with new breakthroughs to solve their challenges,” Dr Marshall said.

- “It’s all enabled by innovative receivers developed by CSIRO that feature phased array feed technology, which see ASKAP generate more raw data at a faster rate than Australia’s entire internet traffic.

- “In a time when we have access to more data than ever before, ASKAP and the supercomputers that support it are delivering unparalleled insights and wielding the tools that will underpin our data-driven future to make life better for everybody.

- The telescope’s key feature is its wide field of view, generated by new CSIRO-designed receivers, that enable ASKAP to take panoramic pictures of the sky in amazing detail.

- Using ASKAP at CSIRO’s Murchison Radio-astronomy Observatory (MRO) in outback Western Australia, the survey team observed 83% of the entire sky.

- The initial results are published today in the Publications of the Astronomical Society of Australia. 49)

- RACS (Rapid ASKAP Continuum Survey) is the first large-area survey to be conducted with the full 36-antenna ASKAP (Australian SquareKilometer Array Pathfinder) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of futuredeep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP bandof 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo SkySurvey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with~15 arcsecresolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, wepresent a description of the RACS survey and the first data release of 903 images covering the sky south of declination+41ºmade over a288-MHz band centered at 887.5 MHz.

SKA_Auto26

Figure 44: Artist's rendition of the Rapid ASKAP Continuum Survey (image credit: CSIRO)