Minimize Mars Express

Mars Express Mission

Spacecraft    Launch   Mission Status    Sensor Complement   References

Mars, our most Earth-like planetary neighbour, beckons. Its pristine and diverse surface, equal in area to Earth's land surface, displays a long and fascinating history, punctuated by impact events, volcanism, tectonics, and aeolian, fluvial and glacial erosion. A century ago, astronomers believed they were witnessing the last attempts of a dying martian civilisation to cope with the devastating effects of climate change. The notion of an intelligently inhabited Mars was later dispelled, but the expectation that simple life forms could have survived persisted. Today, after sending robotic missions to Mars, our view of the planet retains some striking similarities to those earlier romantic conjectures. 1)

We know from orbiting spacecraft that Mars has undergone dramatic climatic and geologic changes. Water coursing over its surface in the distant past left dramatic evidence in deeply carved channels and fluvial networks. Yet today we find the planet is cold and dry. There is no evidence so far that life exists there now, but primitive life during Mars' warmer, wetter past is a real possibility. So, mysteries remain: how did our Earth-like neighbour arrive at its present parched, cold and almost airless state? Did life evolve and then die out? Did it leave a fossil record? Last but not least, can the changes experienced by Mars teach us something about the dramatic changes being predicted for our own planet?

These and other questions have spurred scientists and engineers to meet the enormous challenge of sending missions to Mars. A Mars-bound spacecraft must survive journeys of more than 6 months, approach the planet from just the right angle and at the right speed to enter orbit, and then operate successfully to return valuable observations. Some missions have failed, but the successes have more than repaid the effort and risk. Our knowledge about Mars has grown dramatically with every successful visit. Four decades of space-based observations have produced more information and knowledge than earlier astronomers with Earth-bound telescopes could have imagined.

Mars Express is a space exploration mission of ESA (European Space Agency), Europe's first mission to the Red Planet. Mars Express is so called because it was built more quickly than any other comparable planetary mission. Beagle 2 was named after the ship in which Charles Darwin sailed when formulating his ideas about evolution.

The Mars Express mission is dedicated to the orbital (and originally in-situ) study of the interior, subsurface, surface and atmosphere, and environment of the planet Mars. The scientific objectives of the Mars Express mission represent an attempt to fulfill in part the lost scientific goals of the Russian Mars 96 mission, complemented by exobiology research with Beagle 2. Mars exploration is crucial for a better understanding of the Earth from the perspective of comparative planetology. The mission's main objective is to search for subsurface water and deploy a lander onto the Martian surface.

It carries seven instruments and deployed a lander, Beagle 2. The lander was lost during its attempt to reach the planet's surface but the orbiter continues its highly successful on-going global investigation of Mars and its two moons, Phobos and Deimos.

ESA provided the launcher, orbiter and operations, while the instruments were provided by scientific institutions through their own funding.

Scientific objectives:

The Mars Express orbiter is the core of the mission, scientifically justified on its own merit by providing unprecedented global coverage of the planet, in particular of the surface, subsurface and atmosphere. Beagle 2 was selected through its innovative scientific goals and very challenging payload. The combination of orbiter and lander was expected to be a powerful tool to focus on two related issues: the current inventory of ice or liquid water in the martian crust, and possible traces of past or present biological activity on the planet. The broad scientific objectives of the orbiter are:

- global color and stereo high-resolution imaging with about 10 m resolution and imaging of selected areas at 2 m pix–1;

- global IR mineralogical mapping of the surface;

- radar sounding of the subsurface structure down to the permafrost;

- global atmospheric circulation and mapping of the atmospheric composition;

- interaction of the atmosphere with the surface and the interplanetary medium;

- radio science to infer critical information on the atmosphere, ionosphere, surface and interior.

The ultimate scientific objective of Beagle 2 was the detection of extinct and/or extant life on Mars, a more attainable goal being the establishment of the conditions at the landing site that were suitable for the emergence and evolution of life. In order to achieve this goal, Beagle 2 was designed to perform in situ geological, mineralogical and geochemical analysis of selected rocks and soils at the landing site. Furthermore, studies of the martian environment were planned via chemical analysis of the atmosphere, local geomorphological studies of the landing site and via the investigation of dynamic environmental processes.


Figure 1: Illustration of ESA's Mars Express spacecraft (image credit: ESA)



Mars Express is a pioneer - and not just because it is Europe's first mission to the Red Planet. It is also pioneering more economic ways of building space science missions at ESA. These new working methods have already proved effective and will be applied to future science missions in the agency's long-term scientific program. 2)

ESA is spending just 150 million Euros (1996 prices) on Mars Express, which is about one third of the cost of previous similar missions. This sum covers for the spacecraft, the launch and the operations. Orbiter instruments and the Beagle 2 lander are provided separately. The mission was also built unusually quickly to meet its narrow launch window in June 2003.

Savings are being made by re-using existing hardware, adopting new project management practices, shortening the time from original concept to launch, and procuring the most cost-effective launcher available.

Mars Express is making maximum use of existing technology that is either 'off-the-shelf' or technology that has already been developed for Rosetta, ESA's mission to a comet. Items not – at least partly - in common with Rosetta constitute only about 35% of the spacecraft.

ESA awarded the main contract to Astrium Toulouse, France, the spacecraft prime contractor, that previously would have been done by the project team at ESTEC. In particular, Astrium is managing the technical interfaces between the spacecraft and science payload and between the spacecraft and launcher. This shift in responsibility is allowing industry to streamline procedures and ESA to reduce the size of its project team to half that of previous equivalent projects. Astrium is leading a consortium of 24 companies from 15 European countries and the US.

"This new scheme is best suited to Mars Express constraints. Industry is more responsible in terms of the interfaces, which means we can have a more efficient decision-making process," says Vincent Poinsignon, Mars Express Project Manager at Astrium.

The time from concept to awarding the design and development contract was cut from about five years to little more than one year. Astrium won the prime contract in March 1999 in competition with two other consortia. The design and development phase will take under four years, compared with up to six years for previous similar missions.

Mars Express is a 3-axis stabilized orbiter with a fixed high-gain antenna and body-mounted instruments, and is dedicated to the orbital and in situ study of the planet's interior, subsurface, surface and atmosphere.

Spacecraft item

Mass at launch

Spacecraft bus

439 kg


71 kg


116 kg


427 kg

Launch mass

1223 kg

Typical mean power demand





270 W

310 W

445 W


140 W

50 W

55 W


410 W

360 W

500 W

Table 1: Spacecraft mass and power budget 3)


Spacecraft bus dimensions

1.5 x 1.8 x 1.4 m

Thrust of main spacecraft engine

400 N

Attitude thrusters

8 at 10 N each

Propellant tank volume

2 x270 = 540 liter

Pointing accuracy

Better than 0.05º

Power source

Solar array area

11.42 m2

Lithium batteries

3 at 22.5 Amp hour each (at launch)

Thermal specification

Spacecraft bus




Thermal blanket

Gold-plated AISn alloy

Table 2: Spacecraft parameters


Figure 2: Mars Express in launch configuration at Baikonur (image credit: ESA)


Launch: The Mars Express satellite was launched on 2 June 2003 on a Soyuz-Fregat vehicle from the Baikonur Cosmodrome, Kazakhstan. 4)

Orbit: A HEO (Highly Elliptical Orbit) on Mars (quasi-polar orbit) with a periapsis of 330 km and an apoapsis of 10,530 km, period of 7hrs.

Mars Express was launched from the Fregat upper stage towards Mars with an absolute velocity of 116, 800 km/hr and a velocity relative to the Earth of 10,800 km/hr. On 19 December 2003, 5 days before orbit insertion, the Beagle-2 lander was successfully released towards the surface of the planet. However, no further contact was made with the lander and it was subsequently declared lost (Ref. 3).

In January 2015, the UK space agency announced that the lander has been identified in images from NASA's MRO (Mars Reconnaissance Orbiter). The images appeared to show the lander partially deployed on the surface.

On 25 December 2003 the orbiter underwent a successful orbit insertion manuver and after slow orbit adjustments it reached the operational orbit.

Nominal Operational Orbit Parameters:

• Orbital inclination - 86.9°

• Apocenter - 10,530 km

• Pericenter - 330 km

• Period - 7 hr 00 m

• Observational phase at pericenter - about 1 hour

• Communications phase - 6.5-7.0 hours minimum

Operations Center: ESOC (European Space Operations Control Center) in Darmstadt communicates with the spacecraft via the ESA New Norcia ground station in Perth, Australia. The spacecraft sends housekeeping data on instrument temperatures, voltages and spacecraft orientation, for example, and science data. The ground station sends control commands to the spacecraft. Scientific data is stored onboard using the 12 Gbit solid state mass memory prior to the downlink to Earth.


The Beagle 2 descent capsule was ejected 5 days before arrival at Mars, while the orbiter was on a Mars collision course; Mars Express was then retargeted for orbit insertion. From its hyperbolic trajectory, Beagle 2 entered and descended through the atmosphere in about 5 min, intending to land at < 40 m s–1 within an error ellipse of 20 x 100 km. The fate of Beagle 2 remains unknown because no signal was ever received from the martian surface, neither by the UK's Jodrell Bank radio telescope nor by the Mars Express and Mars Odyssey orbiters. All of them made strenuous efforts to listen for the faintest of signals for many weeks following Beagle 2's arrival at Mars.

ESA set up a commission to investigate the potential causes of the probable accident and issued a number of recommendations for future missions. The selected landing site was in Isidis Planitia (11.6°N, 269.5°W), which is a safe area of high scientific interest – this impact basin was probably flooded by water during part of its early history, leaving layers of sedimentary rocks. The area is surrounded by geological units of a variety of ages and compositions, from densely cratered highlands to volcanic flows to younger smooth plains. The lander's highly integrated instrument suite was expected to perform a detailed geological, mineralogical and chemical analysis of the site's rocks and soils, provide site meteorology, and focus on finding traces of past or present biological activity. Data from this combination of instruments could have solved the issue of life on Mars. Beagle 2's operational lifetime was planned to be up to 180 sols (about 6 months).



Mission status

• 11 January 2019: Fifteen years ago, early on the evening of Saturday 10 January 2004, over a dozen scientists crammed into a tiny, somewhat austere room at the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) research center in Berlin Adlershof to stare intently at two monitors. They were awaiting the first images from 'their' experiment, the High Resolution Stereo Camera (HRSC). Just over two weeks earlier, the Mars Express spacecraft, launched by the European Space Agency (ESA), had reached its destination and maneuvered into a stable, elliptical orbit over the poles of the planet. As planned, the experiments were now set to begin. Despite an initial unsatisfactory test, HRSC showed its full potential during the tenth orbit. Mars Express transmitted razor-sharp high-definition image data with a perfect brightness distribution via ESA's ground stations to the ESOC (European Space Operations Center) in Darmstadt. In Berlin the images were greeted with boundless enthusiasm. This was the beginning of a success story that has lasted one-and-a-half decades. 5)

- HRSC is a German camera experiment developed by DLR and carried on board ESA's Mars Express orbiter; it is operated by the DLR Institute of Planetary Research. The spacecraft has been orbiting Mars since Christmas 2003. This week, on 8 January 2019, the orbiter, dubbed 'MEX' by the scientists and engineers involved in the project, completed its 19,000th orbit of Mars. ESA's first planetary mission is a true 'marathon runner'. In total, the probe has travelled approximately 950 million km around Mars, in addition to its almost 500-million-kilometer journey from Earth to Mars. The total distance travelled is roughly the same as the distance from the Sun to Saturn.

- The high-resolution image data, in stereo and color, form the basis for the global mapping of Mars and the creation of digital terrain models that reveal the planet's topography. HRSC has acquired image data during more than 5000 orbits around Mars and thus provided more data than any other German experiment investigating objects within the Solar System. To date, approximately 360 GB of compressed raw data have been acquired and transmitted to Earth. After 'unpacking' the data packets and putting them through the first stage of processing, the researchers have 5400 GB of data, which form the basis for further processing into image data suitable for cartography.


Figure 3: The striking landscape of Hydraotes Chaos on Mars acquired by HRSC (image credit: ESA/DLR/FU Berlin)

- The images have resulted in an ever-growing collection of spectacular views of the diverse Martian landscape – from image and terrain model mosaics to animations that can be derived from the digital landscape models. The camera has provided coverage of 80 percent of the Martian surface at high resolution (better than 20 m/pixel). Originally, Mars Express was intended to last only one Martian year, which equates to two Earth years. Due to its success, ESA has already extended the mission seven times, and it is now set to run until the end of 2022. Ralf Jaumann from the DLR Institute of Planetary Research in Berlin-Adlershof is the Principal Investigator for the experiment; the science and engineering team includes 51 co-investigators. Hundreds of scientists worldwide are now working with the data from the experiment. The systematic processing of the camera data is performed at the DLR Institute of Planetary Research. Staff in the Department of Planetary Science and Remote Sensing at the Freie Universität Berlin create the image products that are published monthly.

The German space industry implements a DLR concept for mapping Mars

- HRSC, which was developed by DLR in conjunction with German industry, represented, at the time, a completely new camera concept that had never previously been used for planetary mapping. Its unique optics – an Apo-Tessar telescope built by Jena-Optronik GmbH – illuminate nine line sensors positioned transverse to the direction of flight that, due to the forward motion of the orbiter, image the same strip of the Martian surface – like a scanner – working line-by-line, one after the other. In doing so, each sensor images the same area on the surface from a different angle. Back on Earth, the four stereo image strips and the nadir channel, which is oriented perpendicular to Mars and provides the highest image resolution at 10 to 12 m/pixel, are used to create 3D models of the planet's surface. The remaining four of the nine line sensors are equipped with special color filters for acquiring multispectral data. The focal plane with the nine sensors forms the heart of the camera and was developed by DLR. Lewicki Microelectronic GmbH built the camera's electronics. Dornier (later Astrium and now Airbus Defence and Space) in Friedrichshafen assembled the complete instrument. The camera system was originally developed for use on the Russian Mars 96 mission, but it was lost shortly after launch on 17 November 1996. The flight spare camera, which is of identical construction, was then used on Mars Express instead – after the incorporation of a number of improvements.

• 10 January 2019: ESA's Mars Express entered orbit around the Red Planet on 25 December 2003. The spacecraft began returning the first images from orbit using its HRSC (High Resolution Stereo Camera) just a couple of weeks later, and over the course of its fifteen year history has captured thousands of images covering the globe. 6)

Figure 4: This video compilation highlights some of the stunning scenes revealed by this long-lived mission. From breathtaking horizon-to-horizon views to the close-up details of ice- and dune-filled craters, and from the polar ice caps and water-carved valleys to ancient volcanoes and plunging canyons, Mars Express has traced billions of years of geological history and evolution [video credit: ESA/DLR/FU Berlin (CC BY-SA 3.0 IGO)]

• 20 December 2018: The image of Figure 5 shows what appears to be a large patch of fresh, untrodden snow – a dream for any lover of the holiday season. However, it's a little too distant for a last-minute winter getaway: this feature, known as Korolev crater, is found on Mars, and is shown here in beautiful detail as seen by Mars Express. 7) 8)

- ESA's Mars Express mission launched on 2 June 2003, and reached Mars six months later. The satellite fired its main engine and entered orbit around the Red Planet on 25 December, making this month the 15-year anniversary of the spacecraft's orbit insertion and the beginning of its science program.

- These images are an excellent celebration of such a milestone. Taken by the Mars Express HRSC (High Resolution Stereo Camera), this view of Korolev crater comprises five different ‘strips' that have been combined to form a single image, with each strip gathered over a different orbit. The crater is also shown in perspective, context, and topographic views, all of which offer a more complete view of the terrain in and around the crater.

- The Korolev crater is 82 km across and found in the northern lowlands of Mars, just south of a large patch of dune-filled terrain that encircles part of the planet's northern polar cap (known as Olympia Undae). It is an especially well-preserved example of a martian crater and is filled not by snow but ice, with its center hosting a mound of water ice some 1.8 km thick all year round.

- This ever-icy presence is due to an interesting phenomenon known as a ‘cold trap', which occurs as the name suggests. The crater's floor is deep, lying some two km vertically beneath its rim.


Figure 5: Korolev crater in context: This image shows the landscape in and around Korolev crater, an 82 km across feature found in the northern lowlands of Mars. The region outlined by the bold white box indicates the area imaged by the Mars Express HRSC over orbits 18042 (captured on 4 April 2018), 5726, 5692, 5654, and 1412. The other white boxes indicate the data gathered by Mars Express over each individual orbit. The blue hues across the frame represent the elevation of the terrain, as indicated by the bar at the bottom (image credit: NASA MGS MOLA Science Team)

- The very deepest parts of Korolev crater, those containing ice, act as a natural cold trap: the air moving over the deposit of ice cools down and sinks, creating a layer of cold air that sits directly above the ice itself.

- Behaving as a shield, this layer helps the ice remain stable and stops it from heating up and disappearing. Air is a poor conductor of heat, exacerbating this effect and keeping Korolev crater permanently icy.

- The crater is named after chief rocket engineer and spacecraft designer Sergei Korolev (1907-1966), dubbed the father of Soviet space technology. Korolev worked on a number of well-known missions including the Sputnik program – the first artificial satellites ever sent into orbit around the Earth, in 1957 and the years following, the Vostok and Vokshod programs of human space exploration (Vostok being the spacecraft that carried the first ever human, Yuri Gagarin, into space in 1961) as well as the first interplanetary missions to the Moon, Mars, and Venus. He also worked on a number of rockets that were the precursors to the successful Soyuz launcher – still the workhorses of the Russian space program, and used for both crewed and robotic flights.


Figure 6: Plan view of Korolev crater. This plan mosaic comprises five different observational strips that have been combined to form a single image, gathered over orbits 18042 (captured on 4 April 2018), 5726, 5692, 5654, and 1412. It covers a region centered at 165º E, 73º N, and has a resolution of ~21 m/pixel. This image was created using data from the nadir and color channels of the HRSC. The nadir channel is aligned perpendicular to the surface of Mars, as if looking straight down at the surface (image credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO)

- The region of Mars has also been of interest to other missions, including ESA's ExoMars program, which aims to establish if life ever existed on Mars. The CaSSIS (Color and Stereo Surface Imaging System) instrument aboard the ExoMars Trace Gas Orbiter, which began operating at Mars on 28 April 2018, also snapped a beautiful view of part of Korolev crater – this was one of the very first images the spacecraft sent back to Earth after arriving at our neighboring planet. CaSSIS imaged a 40 km long chunk of the crater's northern rim, neatly showcasing its intriguing shape and structure, and its bright icy deposits.


Figure 7: Topography of the Korolev crater. This color-coded topographic view shows the relative heights of the terrain in and around the Korolev crater, an ice-filled crater in the northern lowlands of Mars. Lower parts of the surface are shown in blues and purples, while higher-altitude regions show up in whites, browns, and reds, as indicated on the scale to the top right. The crater's thick deposit of ice can be seen at the center of the frame. This view is based on a digital terrain model of the region, from which the topography of the landscape can be derived. It comprises data obtained by the HRSC on Mars Express over orbits 18042 (captured on 4 April 2018), 5726, 5692, 5654, and 1412.It covers a region centered at 165º E, 73º N, and has a resolution of ~ 21 m/pixel (image credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO)

• 25 November 2018: At just before 21 hours CET (Central European Time) on 26 November, Mars will receive a new visitor: NASA's InSight lander. InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) will be the first Mars mission dedicated to studying the planet's interior, including sensing Mars quakes. Learning about the interior of the planet will inform scientists about the early formation of the rocky planets in our own Solar System, as well as the evolution of exoplanets orbiting other stars. 9)


Figure 8: Global view from Mars Express of the InSight landing site on Elysium Planitia on Mars. InSight will target a landing site centered at 4.5ºN/135.9ºE, about 600 km from Gale Crater, the region that NASA's Curiosity rover is exploring (image credit: ESA, CC BY-SA 3.0 IGO)

- Since InSight's study is focused on sensing the planet's interior, surface geology is not such an important factor in deciding the landing site as it is for other missions. Therefore, it is targeting a flat, stable surface in the Elysium Planitia region, which is captured in this wide field view from ESA's Mars Express Visual Monitoring Camera taken on 29 February 2016.

- In the image of Figure 8, Elysium Planitia is located roughly between the dark features at the bottom right (which includes Gale Crater), and the brighter arc-shaped feature above, to the right of the center of the image, which is the location of volcano Elysium Mons. The north polar ice cap is seen at the top of the image.

- ESA has already been supporting InSight's mission with its ground station network throughout the cruise to Mars, following the mission's launch in May 2018. The joint ESA-Roscosmos Trace Gas Orbiter (TGO) of the ExoMars mission, which arrived at Mars in October 2016, is ready to support data relay from InSight several times per day once it has landed safely, as required. Mars Express will also be prepared to support, on NASA's request, ad hoc relay contacts with InSight in case of emergency needs.

- TGO will also act as a data relay for the ExoMars rover mission in 2021, for which the landing site was recommended earlier this month as Oxia Planum. A region that is thought to have hosted vast volumes of water in the past, it is an ideal location to search for clues that may help reveal the presence of past life on Mars.

- NASA also just announced the landing site for its Mars 2020 rover, which is set to explore an ancient river delta in Jezero Crater. Moreover, the rover will collect rock and soil samples and store them in a cache on the planet's surface. NASA and ESA are studying future mission concepts to retrieve the samples and return them to Earth, setting the stage for the next decade of Mars exploration.

• 22 November 2018: ESA's Mars Express has imaged an intriguing part of the Red Planet's surface: a rocky, fragmented, furrowed escarpment lying at the boundary of the northern and southern hemisphere. 10)


Figure 9: This perspective view shows Nili Fossae, an escarpment sitting between the northern lowlands (lower right) and southern highlands (upper left) of Mars (image credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO)

Legend to Figure 9: This oblique perspective was generated using data from ESA's Mars Express HRSC. This scene is part of a region imaged during Mars Express orbit 17916 on 26 February 2018, with the gathered data combined to form a detailed mosaic. The image covers a part of the martian surface centered on 78°E, 28°N. This view looks across the feature from south to north.

- This region is an impressive example of past activity on the planet and shows signs of where flowing wind, water and ice once moved material from place to place, carving out distinctive patterns and landforms as it did so.

- Mars is a planet of two halves. In places, the northern hemisphere of the planet sits a full few kilometers lower than the southern; this clear topographic split is known as the martian dichotomy, and is an especially distinctive feature on the Red Planet's surface.


Figure 10: Nili Fossae in context: Nili Fossae, an escarpment sitting between the northern lowlands and southern highlands of Mars, shown in a wider context. The region outlined by the larger white box indicates the whole area imaged during ESA's Mars Express orbit 17916, while the smaller box shows the area displayed in this image release. In this context image, north is up (image credit: NASA MGS MOLA Science Team)

- Northern Mars also displays large areas of smooth land, whereas the planet's southern regions are heavily pockmarked and scattered with craters. This is thought to be the result of past volcanic activity, which has resurfaced parts of Mars to create smooth plains in the north – and left other regions ancient and untouched.

- The star of this Mars Express image, a furrowed, rock-filled escarpment known as Nili Fossae, sits at the boundary of this north-south divide. This region is filled with rocky valleys, small hills, and clusters of flat-topped landforms (known as mesas in geological terms), with some chunks of crustal rock appearing to be depressed down into the surface creating a number of ditch-like features known as graben.


Figure 11: This color view shows the landscape around Nili Fossae, an escarpment sitting between the northern lowlands and southern highlands of Mars. It was created using data from the nadir channel of the HRSC on ESA's Mars Express orbiter, the field of view which is aligned perpendicular to the surface of Mars, and the camera's color channels. The data were acquired during spacecraft orbit 17916. The ground resolution is about 18 m/pixel and the images cover a part of the martian surface centered on 78ºE, 28ºN. North is to the right. (image credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO)

- As with much of the surrounding environment, and despite Mars' reputation as a dry, arid world today, water is believed to have played a key role in sculpting Nili Fossae via ongoing erosion. In addition to visual cues, signs of past interaction with water have been spotted in the western (upper) part of this image – instruments such as Mars Express' OMEGA spectrometer have spotted clay minerals here, which are key indicators that water was once present.

- The elevation of Nili Fossae and surroundings, shown in the topographic view (Figure 12), is somewhat varied; regions to the left and lower left (south) sit higher than those to the other side of the frame (north), illustrating the aforementioned dichotomy. This higher-altitude terrain appears to consist mostly of rocky plateaus, while lower terrain comprises smaller rocks, mesas, hills, and more, with the two sections roughly separated by erosion channels and valleys.

- This split is thought to be the result of material moving around on Mars hundreds of millions of years ago. Similar to glaciers on Earth, flows of water and ice cut through the martian terrain and slowly sculpted and eroded it over time, also carrying material along with them. In the case of Nili Fossae, this was carried from higher areas to lower ones, with chunks of resistant rock and hardy material remaining largely intact but shifting downslope to form the mesas and landforms seen today.


Figure 12: This image shows the relative heights of the landscape in and around Nili Fossae, an escarpment sitting between the northern lowlands and southern highlands of Mars. The lower parts of the surface are shown in blues and purples, while higher-altitude regions show up in whites, browns, and reds, as indicated on the scale to the top right (image credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO)

Legend to Figure 12: The color-coded topographic view is based on a digital terrain model of the region, from which the topography of the landscape can be derived. It comprises data obtained by the HRSC on ESA's Mars Express during spacecraft orbit 17916. The ground resolution is about 18 m/pixel and the images cover a part of the martian surface centered on 78°E, 28°N. North is to the right.


Figure 13: This image shows Nil Fossae, an escarpment sitting between the northern lowlands and southern highlands of Mars, in 3D when viewed using red-green or red-blue glasses. This anaglyph was derived from data obtained by the nadir channel and one stereo channel of the High Resolution Stereo Camera (HRSC) on ESA's Mars Express during spacecraft orbit 17916. It covers a part of the martian surface centered on 78ºE, 28ºN. North is to the right (image credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO)

- The shapes and structures scattered throughout this image are thought to have been shaped over time by flows of not only water and ice, but also wind. Examples can be seen in this image in patches of the surface that appear to be notably dark against the ochre background, as if smudged with charcoal or ink. These are areas of darker volcanic sand, which have been transported and deposited by present-day martian winds. Wind moves sand and dust around often on Mars' surface, creating rippling dune fields across the planet and forming multi-colored, patchy terrain like Nili Fossae.

- ESA's Mars Express was launched in 2003. As well as producing striking views of the martian surface such as this, the mission has shed light on many of the planet's biggest mysteries – and helped to build the picture of Mars as a planet that was once warmer, wetter and potentially habitable.

November 14, 2018: The SPC (Science Program Committee) of ESA has confirmed the continued operations of ten scientific missions in the Agency's fleet up to 2022. After a comprehensive review of their scientific merits and technical status, the SPC has decided to extend the operation of the five missions led by ESA's Science Program: Cluster, Gaia, INTEGRAL, Mars Express, and XMM-Newton. The SPC also confirmed the Agency's contributions to the extended operations of Hinode, Hubble, IRIS, SOHO, and ExoMars TGO. 11)

- This includes the confirmation of operations for the 2019–2020 cycle for missions that had been given indicative extensions as part of the previous extension process, and indicative extensions for an additional two years, up to 2022.
Note: Every two years, all missions whose approved operations end within the following four years are subject to review by the advisory structure of the Science Directorate. Extensions are granted to missions that satisfy the established criteria for operational status and science return, subject to the level of financial resources available in the science program. These extensions are valid for the following four years, subject to a mid-term review and confirmation after two years.

- The decision was taken during the SPC meeting at ESA/ESAC (European Space Astronomy Center) near Madrid, Spain, on 14 November.

- ESA's science missions have unique capabilities and are prolific in their scientific output. Cluster, for example, is the only mission that, by varying the separation between its four spacecraft, allows multipoint measurements of the magnetosphere in different regions and at different scales, while Gaia is performing the most precise astrometric survey ever realized, enabling unprecedented studies of the distribution and motions of stars in the Milky Way and beyond.

- Many of the science missions are proving to be of great value to pursue investigations that were not foreseen at the time of their launch. Examples include the role of INTEGRAL and XMM-Newton in the follow-up of recent gravitational wave detections, paving the way for the future of multi-messenger astronomy, and the many discoveries of diverse exoplanets by Hubble.

- Collaboration between missions, including those led by partner agencies, is also of great importance. The interplay between solar missions like Hinode, IRIS and SOHO provides an extensive suite of complementary instruments to study our Sun; meanwhile, Mars Express and ExoMars TGO are at the forefront of the international fleet investigating the Red Planet.

- Another compelling factor to support the extension is the introduction of new modes of operation to accommodate the evolving needs of the scientific community, as well as new opportunities for scientists to get involved with the missions.

Table 3: Extended life for ESA's science missions 11)

• 26 October 2018: The surface of Mars may appear to be perpetually still, but its many features are ever-changing – as represented in this Mars Express view of the severely eroded Greeley impact crater. 12)

- Greeley crater, named for the renowned planetary scientist Ronald Greeley, is located in one of the most ancient parts of Mars: a section of the planet's southern highlands named Noachis Terra.

- This region is thought to be some four billion years old, and is thus home to many features that formed in the very earliest days of the Solar System. Many craters have formed, changed, and eroded away in Noachis Terra, and Greeley crater is no exception.

- The subject of these Mars Express images sits between two huge, deep impact basin plains, Argyre and Hellas, and is a great example of a very old crater that has endured significant erosion over time.

- Wind, water, ice, and subsequent impacts have all played a part in wearing down the once-fresh structure of the crater. They have smoothed away and removed its walls and rims, erased any characteristic patterns in the nearby landscape that may have formed alongside the crater (such as ‘ejecta', or rays of material flung out from an impact site), and infilled and flattened out its floor.

- This floor is covered with a number of smaller impact pits and pockmarks that have occurred since Greeley crater's formation – another clear indication of the crater's immense age. With a depth of only 1.5 km Greeley crater is actually relatively shallow for a martian crater, making it somewhat difficult to pick out from the surrounding terrain.


Figure 14: The Greeley crater is a degraded impact crater in the Southern Highlands of Mars. The region outlined by the larger white box indicates the area imaged over 16 Mars Express orbits (0430, 1910, 1932, 2412, 2467, 2478, 4306, 4317, 4328, 6556, 8613, 8620, 8708, 12835, 14719, 16778). In this context image, north is up (image credit: NASA MGS MOLA Science Team) 13)


Figure 15: This image shows the landscape in and around Greeley crater, a degraded impact crater in the southern highlands of Mars. This color image was created using data from the nadir channel, the field of view which is aligned perpendicular to the surface of Mars, and the camera's color channels (image credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO) 14)

Legend to Figure 15: This plan view is a mosaic of data acquired by the High Resolution Stereo Camera on Mars Express over 16 of the spacecraft's orbits (0430, 1910, 1932, 2412, 2467, 2478, 4306, 4317, 4328, 6556, 8613, 8620, 8708, 12835, 14719, 16778). The ground resolution is about 100 m/pixel and the images cover a part of the martian surface ranging from 2°W to 9°E / 31.5° to 43.5°S. North is up.

- Accompanying views of the crater show it in a wider context on Mars, color-coded by topography – highlighting the relative depths of the crater, its broken-down wall, smaller superimposed craters, and other features throughout the region – and also via an oblique perspective, which looks across the crater towards the south-west. Together, these images well-characterize the crater and its environment, and offer an intriguing insight into this ancient region on our planetary neighbor.

- Greeley crater earned its moniker following a proposal by the International Astronomical Union in 2015 to name the crater after distinguished planetary scientist Ronald Greeley. Greeley passed away on 27 October 2011. Ronald Greeley's passion was Mars science. Not only was he a co-investigator for the Mars Express HRSC, but he was also involved in other Mars missions, such as Mariner, Viking, Pathfinder, Mars Global Surveyor and the Mars Exploration Rovers Spirit and Opportunity. His career in planetary research began in 1967 at NASA AMES Research Center, where he studied volcanic landforms and lava tubes on Earth and the Moon. He later worked with planetary mission data acquired by Galileo for Jupiter, Magellan for Venus, and Voyager 2 for Uranus and Neptune. He was also interested in surface features and processes that occur due to the effects of wind on other planets. In 1977 he became Professor of the School of Earth and Space Exploration at Arizona State University, where he created the Planetary Aeolian Laboratory, which is still running to this day.

- Alongside significant work in planetary science spanning not only Mars and related missions but also lunar research and missions to Venus, Jupiter, Uranus, and Neptune, Greeley was a Regents' Professor of planetary geology at Arizona State University from 1977 to 2011, and co-investigator of the Mars Express High Resolution Stereo Camera (HRSC) – the instrument that gathered the data used in these images.


Figure 16: This image shows the relative heights of the landscape in and around Greeley crater, a degraded impact crater in the Southern Highlands of Mars. Lower parts of the surface are shown in blues and purples, while higher-altitude regions show up in whites, browns, and reds, as indicated on the scale to the top right. The color-coded topographic view is based on a digital terrain model of the region, from which the topography of the landscape can be derived (image credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO) 15)

Legend to Figure 16: This colored topographic view comprises data obtained by the High Resolution Stereo Camera on Mars Express over 16 of the spacecraft's orbits (0430, 1910, 1932, 2412, 2467, 2478, 4306, 4317, 4328, 6556, 8613, 8620, 8708, 12835, 14719, 16778). The ground resolution is about 100 m/pixel and the images cover a part of the martian surface ranging from 2°W to 9°E / 31.5° to 43.5°S. North is up.

• 25 October 2018: Since 13 September, ESA's Mars Express has been observing the evolution of an elongated cloud formation hovering in the vicinity of the 20 km-high Arsia Mons volcano, close to the planet's equator. 16)

- In spite of its location, this atmospheric feature is not linked to volcanic activity but is rather a water ice cloud driven by the influence of the volcano's leeward slope on the air flow – something that scientists call an orographic or lee cloud – and a regular phenomenon in this region.

- The cloud can be seen in this view taken on 10 October by the Visual Monitoring Camera (VMC) on Mars Express – which has imaged it hundreds of times over the past few weeks – as the white, elongated feature extending 1500 km westward of Arsia Mons. As a comparison, the cone-shaped volcano has a diameter of about 250 km.


Figure 17: Cloud formation near Arsia Mons (image credit: ESA/GCP/UPV/EHU Bilbao, CC BY-SA 3.0 IGO)

- Mars just experienced its northern hemisphere winter solstice on 16 October. In the months leading up to the solstice, most cloud activity disappears over big volcanoes like Arsia Mons; its summit is covered with clouds throughout the rest of the martian year.

- However, a seasonally recurrent water ice cloud, like the one shown in this image, is known to form along the southwest flank of this volcano – it was previously observed by Mars Express and other missions in 2009, 2012 and 2015.

- The cloud's appearance varies throughout the martian day, growing in length during local morning downwind of the volcano, almost parallel to the equator, and reaching such an impressive size that could make it visible even to telescopes on Earth.

- The formation of water ice clouds is sensitive to the amount of dust present in the atmosphere. These images, obtained after the major dust storm that engulfed the entire planet in June and July, will provide important information on the effect of dust on the cloud development and on its variability throughout the year.

- The elongated cloud hovering near Arsia Mons this year was also observed with the visible and near-infrared mapping spectrometer, OMEGA, and the High Resolution Stereo Camera (HRSC) on Mars Express, providing scientists with a variety of different data to study this phenomenon.


Figure 18: Left: Cloud on 21 September 2018 observed by HRSC (image credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO); Right: Cloud on 17 September 2018 observed by OMEGA (image credit: ESA/CNES/CNRS/IAS)

• 25 July 2018: Radar data collected by ESA's Mars Express point to a pond of liquid water buried under layers of ice and dust in the south polar region of Mars. 17)

- Evidence for the Red Planet's watery past is prevalent across its surface in the form of vast dried-out river valley networks and gigantic outflow channels clearly imaged by orbiting spacecraft. Orbiters, together with landers and rovers exploring the martian surface, also discovered minerals that can only form in the presence of liquid water.

- But the climate has changed significantly over the course of the planet's 4.6 billion year history and liquid water cannot exist on the surface today, so scientists are looking underground. Early results from the 15-year old Mars Express spacecraft already found that water-ice exists at the planet's poles and is also buried in layers interspersed with dust.

- The presence of liquid water at the base of the polar ice caps has long been suspected; after all, from studies on Earth, it is well known that the melting point of water decreases under the pressure of an overlying glacier. Moreover, the presence of salts on Mars could further reduce the melting point of water and keep the water liquid even at below-freezing temperatures.

- But until now evidence from the MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument the first radar sounder ever to orbit another planet, remained inconclusive.

- It has taken the persistence of scientists working with this subsurface-probing instrument to develop new techniques in order to collect as much high-resolution data as possible to confirm their exciting conclusion.

- Ground-penetrating radar uses the method of sending radar pulses towards the surface and timing how long it takes for them to be reflected back to the spacecraft, and with what strength. The properties of the material that lies between influences the returned signal, which can be used to map the subsurface topography.


Figure 19: ESA's Mars Express has used radar signals bounced through underground layers of ice to identify a pond of water buried below the surface. This image shows an example radar profile for one of 29 orbits over the 200 x 200 km study region in the south polar region of Mars. The bright horizontal feature at the top corresponds to the icy surface of Mars. Layers of the south polar layered deposits – layers of ice and dust – are seen to a depth of about 1.5 km. Below is a base layer that in some areas is even much brighter than the surface reflections, while in other places is rather diffuse. The brightest reflections from the base layer – close to the center of this image – are centered around 193º/81ºS in all intersecting orbits, outlining a well-defined, 20 km wide subsurface anomaly that is interpreted as a pond of liquid water (image credit:ESA/NASA/JPL/ASI/University of Rome)

- The radar investigation shows that south polar region of Mars is made of many layers of ice and dust down to a depth of about 1.5 km in the 200 km-wide area analyzed in this study. A particularly bright radar reflection underneath the layered deposits is identified within a 20 km-wide zone.

- Analyzing the properties of the reflected radar signals and considering the composition of the layered deposits and expected temperature profile below the surface, the scientists interpret the bright feature as an interface between the ice and a stable body of liquid water, which could be laden with salty, saturated sediments. For MARSIS to be able to detect such a patch of water, it would need to be at least several tens of centimeters thick.

- "This subsurface anomaly on Mars has radar properties matching water or water-rich sediments," says Roberto Orosei, principal investigator of the MARSIS experiment and lead author of the paper published in the journal Science today. "This is just one small study area; it is an exciting prospect to think there could be more of these underground pockets of water elsewhere, yet to be discovered." 18)

- "We'd seen hints of interesting subsurface features for years but we couldn't reproduce the result from orbit to orbit, because the sampling rates and resolution of our data was previously too low," adds Andrea Cicchetti, MARSIS operations manager and a co-author on the new paper. "We had to come up with a new operating mode to bypass some onboard processing and trigger a higher sampling rate and thus improve the resolution of the footprint of our dataset: now we see things that simply were not possible before."


Figure 20: Water detection under the south pole of Mars (image credit: Context map: NASA/Viking; THEMIS background: NASA/JPL-Caltech/Arizona State University; MARSIS data: ESA/NASA/JPL/ASI/Univ. Rome; R. Orosei et al 2018)

- The finding is somewhat reminiscent of Lake Vostok, discovered some 4 km below the ice in Antarctica on Earth. Some forms of microbial life are known to thrive in Earth's subglacial environments, but could underground pockets of salty, sediment-rich liquid water on Mars also provide a suitable habitat, either now or in the past? Whether life has ever existed on Mars remains an open question, and is one that Mars missions, including the current European-Russian ExoMars orbiter and future rover, will continue to explore.

- "The long duration of Mars Express, and the exhausting effort made by the radar team to overcome many analytical challenges, enabled this much-awaited result, demonstrating that the mission and its payload still have a great science potential," says Dmitri Titov, ESA's Mars Express project scientist. "This thrilling discovery is a highlight for planetary science and will contribute to our understanding of the evolution of Mars, the history of water on our neighbor planet and its habitability."

• 1 June 2018: Fifteen years ago, ESA's Mars Express was launched to investigate the Red Planet. To mark this milestone comes a striking view of Mars from horizon to horizon, showcasing one of the most intriguing parts of the martian surface. 19)

- On 2 June 2003, the Mars Express spacecraft lifted off from Baikonur, Kazakhstan, on a journey to explore our red-hued neighboring planet. In the 15 years since, it has become one of the most successful missions ever sent to Mars, as demonstrated by this image of the region known as the Tharsis province, shown here in its full glory.

- Mammoth volcanoes, sweeping canyons, fractured ground: Tharsis is one of the most geologically interesting and oft-explored parts of the planet's surface. Once an incredibly active region, displaying both volcanism and the shifting crustal plates of tectonics, it hosts most of the planet's colossal volcanoes – the largest in the Solar System.


Figure 21: This view, taken by the HRSC (High Resolution Stereo Camera) aboard Mars Express in October 2017, shows Tharsis in all its glory (image credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO)

Legend to Figure 21: It sweeps from the planet's upper horizon — marked by the faint blue haze at the top of the frame — down across a web of pale fissures named Noctis Labyrinthus (a part of Valles Marineris stretching to the upper left corner of the image), Ascraeus and Pavonis Mons (two of Tharsis' four great volcanoes at more than 20 km high), and finishes at the planet's northern polar ice cap (in this perspective, North is to the lower left).

- Sitting near Mars' equator, Tharsis covers roughly a quarter of the martian surface and is thought to have a played an important role in the planet's history. It straddles the boundary between Mars' southern highlands and northern lowlands.

- Elevation on Mars is defined relative to where the gravity is the same as the average at the martian equator. This serves as a type of ‘sea-level', even though there are no seas.

- Most of Tharsis is higher than average, at between 2 and 10 km high. The province likely formed as mushroom-shaped plumes of molten rock (magma) swelled up beneath the viscous surface over time, creating seeping flows, magma chambers, and large, rocky provinces – like Tharsis – and feeding ongoing volcanism from below.


Figure 22: This map is based on data from NASA's Viking mission. It shows the slice of Mars captured by the HRSC aboard ESA's Mars Express spacecraft to celebrate the mission's 15th anniversary: the intriguing and once-active Tharsis province. Included in this labelled view is the extensive canyon system of Valles Marineris, the web-like system of fissures comprising Noctis Labyrinthus, four volcanoes, and the northern polar cap (image credit: NASA/Viking, FU Berlin) 20)

- Tharsis is also connected to the formation of the famous Valles Marineris, which is some four times longer and deeper than the Great Canyon in Arizona, USA, and the most extensive canyon system discovered in the Solar System. This is partly visible as the dark tendrils to the upper left of the image.

- As magma swelled up beneath the crust to create the Tharsis province, the tension caused some areas to rupture and fracture. Molten rock then flooded these fractures and destabilized and separated regions of the crust yet further, resulting in both the wide, substantial troughs and fissures that comprise modern-day Valles Marineris, and the web-like Noctis Labyrinthus that sits at the canyon system's western end.

- Captured in the new view are volcanoes Pavonis Mons (top right), Ascraeus Mons (just below), Alba Mons (to the bottom left), and a small sliver of Olympus Mons (to the lower right, continuing out of frame) in caramel hues; a view of the region with labels is provided here. The location of this slice of Mars' surface is also shown in a context map of the planet and in a topographic context.


Figure 23: This context map is based on data from the MOLA (Mars Orbiter Laser Altimeter) experiment onboard NASA's MGS (Mars Global Surveyor) mission. It shows the slice of Mars captured by the HRSC aboard ESA's Mars Express spacecraft to celebrate the mission's 15th anniversary: the intriguing and once-active Tharsis province (image credit: NASA/MGS/MOLA Science Team, FU Berlin)

Legend to Figure 23: Included in this labelled view is the extensive canyon system of Valles Marineris, the web-like system of fissures comprising Noctis Labyrinthus, two out of four volcanoes, the north pole, and the so-called Martian dichotomy: the difference in altitude between the northern and southern regions of Mars. Areas at higher altitudes are shown in red-orange tones, while those at lower ones are displayed in blue-greens (as indicated by the scale to the bottom left).

• 11 April 2018: Every so often, your smartphone or tablet receives new software to improve its functionality and extend its life. Now, ESA's Mars Express is getting a fresh install, delivered across over 150 million km of space. 21)

- With nearly 15 years in orbit, Mars Express – one of the most successful interplanetary missions ever – is on track to keep gathering critical science data for many more years thanks to a fresh software installation developed by the mission teams at ESA.

- The new software is designed to fix a problem that anyone still using a five-year-old laptop knows well: after years of intense usage, some components simply start to wear out.

- The spacecraft arrived at Mars in December 2003, on what was planned to be a two-year mission. It has gone on to spend more than 14 years gathering a wealth of data from the Red Planet, taking high-resolution images of much of the surface, detecting minerals on the surface that form only in the presence of water, detecting hints of methane in the atmosphere and conducting close flybys of the enigmatic moon, Phobos.

- Today, Mars Express is in good shape, with only some minor degradation in performance, but its gyroscopes are close to failing.

- These six gyros measure how much Mars Express rotates about any of its three axes. Together with the spacecraft's two startrackers, they determine its orientation in space. This is critical for pointing its large parabolic radio antenna towards Earth and to aim its instruments – like the high-resolution stereo camera – at Mars.

- Startrackers are simple, point-and-shoot cameras that capture images of the background star field and, with some clever processing, are used to determine the craft's orientation in space every few seconds.

- The rotation information from the gyros fills in the information between these snapshots and also when the trackers lose track of the stars – which can last for minutes or even hours.

- "After looking at variations in the intensity of the gyros' internal lasers, we realized last year that, with our current usage, four of the six gyros were trending towards failure," says spacecraft operations manager James Godfrey. "Mars Express was never designed to fly without its gyros continuously available, so we could foresee a certain end to the mission sometime between January and June 2019."

- Engineers knew, however, from long experience with similar gyros on previous missions, including Rosetta and ERS-2, that it might be possible to fly the mission primarily using its startrackers, with the gyros only being switched on occasionally, to extend their lives.

- Hacking 15 year-old code: "Flying on startrackers with the gyros mostly switched off meant that a significant portion of the 15 year-old software on Mars Express would have to be rewritten, and this would be a major challenge," says operations engineer Simon Wood.

- While the spacecraft's builder provided great assistance, it was mostly up to the teams at ESA to open the code, rewrite the software, test it and prepare it for upload as soon as possible.

- "We were also helped by being able to take code flown on Rosetta and transplant it into the Mars Express guidance software," adds Simon.

- A massive, multi-month effort followed, involving teams from across the Agency working to develop the new software that would enable Mars Express to keep flying. This also meant significant changes in instrument science planning.

- "We didn't know if such a massive revision was possible – it hadn't been done before, especially as we would be in a race against time to complete it. But faced with the almost-certain end of mission, what began as wild speculation during a tea break one afternoon last summer has led to the full rewrite now being ready to send up."

- The new software was finalized earlier this year, and has undergone meticulous testing to ensure it will work as intended.

- Go/No-Go: The effort came to fruition yesterday, when the mission team met for a critical go/no-go meeting with the ESA managers to get final approval to activate the new software.

- The new code was actually uploaded to an area of spare memory on Sunday, but just like when your phone or tablet gets a software upgrade, mission controllers will have to shut Mars Express down and trigger a reboot to start running the new code, a critical step set for 16 April.

- If all goes as expected, the mission teams will then spend about two weeks testing and reconfiguring the spacecraft to ensure everything is working as it should before resuming normal science operations.

- "Similar, but much smaller fixes, have been developed in the past for other missions with old gyros, such as Rosetta, but this is certainly the most complex and extensive software rewrite we've done in recent memory," says mission manager Patrick Martin. "Thanks to the skill of ESA's teams, Mars Express will fly well into the 2020s, depending on fuel supply, and continue delivering excellent science for many years yet. I look forward to seeing continued joint science campaigns between Mars Express and other Mars missions like ESA's Trace Gas Orbiter and incoming rover missions."

• 07 September 2017: The Planetary SUrface Portal (PSUP) is an online tool for exploring the wealth of data about Mars collected in past decades. 22)

- Developed by experts at the observatories of Paris Sud (OSUPS) and Lyon (OSUL), PSUP has modules for filtering, processing, and downloading data (Mars System Information, or MarsSI), and for visualizing these data in 3D–including global mineralogical maps, geomorphologic maps, and various other catalogues (Mars Visu).


Figure 24: Screenshot of the PSUP tool. This image shows a view of Mars as seen via Mars Visu. The colored layer represents Mars' surface emissivity at a wavelength of 5µm: in other words, how efficiently any given part of the planetary surface is emitting infrared radiation (yellow-red being higher and blue-purple lower, as indicated by the key in the bottom right). The data comprising this layer are from OMEGA, the Near-Infrared Mineralogical Mapping Spectrometer aboard Mars Express. Mostly obscured beneath this layer, only visible as a few slashes across the planet's face, is a background covering of Viking data provided by Mars Dataset (image credit:ESA/PSUP (OSUPS/OSUL)

• 04 November 2011: The volcanoes on Mars are true giants. As well as being home to the largest volcano in our Solar System, the 24 km high Olympus Mons, and its three neighboring shield volcanoes Arsia, Pavonis and Ascraeus, there are a number of less-frequently observed volcano complexes on the Tharsis bulge near the Martian equator that also reach impressive heights. With a base measuring 155 x 125 km, the 8000 m Tharsis Tholus may only be a ‘mid-range' volcano, but when measured against terrestrial standards, this volcano is truly gigantic. The HRSC (High Resolution Stereo Camera) operated by DLR (German Aerospace Cente) on board ESA's Mars Express spacecraft acquired images of Tharsis Tholus over the course of several orbits, which have been combined to form a mosaic image with a resolution of 14 m/pixel. The images show an area located at 13º north and 268º east. 23) 24)


Figure 25: Perspective view from the north east to the summit of Tharsis Tholus (image credit: DLR, ESA)

- Just as on Earth, volcanoes on Mars played an important role in both its climatic history and the thermal evolution of its interior. Volcanic eruptions fed ‘fresh' gases into the atmosphere, thereby affecting the density and composition of this gaseous envelope. Whether a water cycle existed on Mars or whether it once rained are some of the most exciting questions addressed by Mars exploration. Closely related to this is the question of whether conditions were ever favorable for the development of life on the now dry planet.

- A caldera two and a half kilometers deep and the size of Berlin: Tharsis Tholus differs from many of the other volcanoes on Mars in that its edifice has undergone extensive modification. The complex has not developed in the usual way, for example as a cone or a shield surrounding the volcanic center; instead, it shows signs of substantial deformation. At least two major collapses on the western and eastern flanks have taken place in the course of its four billion year history. Evidence of these events is still visible, taking the form of the steep flanks some several kilometers in height, as well as concentric and ring faults.

- The main feature of Tharsis Tholus is, however, the size of its central caldera. This slightly elongated collapse crater at the summit of the volcano, measuring roughly 32 x 34 km, extends over an area almost as large as Berlin and the base is as much as 2.7 km below the rim. The caldera may have formed when a shallow magma chamber under the volcano emptied, primarily through volcanic eruptions – during which the magma emerged at the surface in the form of lava. This emptying process caused a large cavity to form inside the volcano. As lava accumulated over this cavity, there came a point when it could no longer support the additional weight and it collapsed, forming a depression known as a ‘collapse caldera'.


Figure 26: Alternate perspective of Tharsis Tholus. The volcano towers 8 km above the surrounding terrain with a base that stretches 155 x 125 km and a central caldera measuring 32 x 34 km. The image was created using a Digital Terrain Model (DTM) obtained from the HRSC on ESA's Mars Express spacecraft. Elevation data from the DTM is color coded: purple indicates the lowest lying regions and beige the highest. The scale is in meters. In these images, the relief has been exaggerated by a factor of three (image credit: ESA/DLR/FU Berlin (G. Neukum), CC BY-SA 3.0 IGO, Ref. 24)

- But the true size of Tharsis Tholus is concealed. As the nadir image shows, the volcano is surrounded by numerous solidified lava flows, hiding the original base of the volcano. Taking into account the number and massive extent of these lava flows, it is possible that Tharsis Tholus is ‘submerged' in lava to a depth of several kilometers.

- The image data used to create the images shown here were acquired using the HRSC between 28 October and 13 November 2004 during orbits 0997, 1019, 1041 and 1052. The images were produced by the Department of Planetary Sciences and Remote Sensing in the Institute for Geological Sciences of the Freie Universität Berlin. The perspective views were computed from the HRSC stereo channels. The anaglyph was derived from one stereo channel and the nadir channel, which captures image data at the highest resolution of all the channels. The black-and-white detail image was acquired with the nadir channel. The false-color images are based on digital terrain models of the region, from which the topography of the landscape can be derived.

- November 2011 – Mars in the spotlight: Mars continues to be one of the most important targets for planetary research. On 25 November, NASA's Mars Science Laboratory, a lander carrying a rover named Curiosity, will be launched on its journey to the Red Planet. Curiosity is five times heavier than the two ‘veteran' rovers, Spirit and Opportunity, which have been exploring the Martian surface since 2004. Equipped with the most comprehensive and sophisticated suite of experiments, Curiosity will continue the quest to find evidence for the existence, past or present, of organic molecules on Mars.

- Even the Russian space program will again contribute to the exploration of Mars; on 5-8 November 2011 at 22:16 CET, the Phobos Grunt spacecraft will embark on its journey to Phobos, the larger of Mars' two moons. Once it lands in 2013, the small lander will collect samples for roughly a year. The loaded return vehicle will then blast off from Phobos and arrive back at Earth in 2014. DLR is participating in this mission by developing digital terrain models derived from HRSC image data, to support the Russians in the selection of the landing sites. Though manned missions to Mars are in the distant future, the Mars500 long-term experiment will help with preparations. In this experiment, the subjects embarked on a 520-day virtual flight to Mars inside a simulated spaceship. This journey will come to an end on 4 November, when they will ‘return to Earth'.

- The HRSC experiment on the European Space Agency's Mars Express mission is led by the Principal Investigator (PI) Prof. Dr Gerhard Neukum, who was also responsible for the technical design of the camera. The science team for the experiment consists of 40 co-investigators from 33 institutions and 10 nations. The camera was developed at DLR under the leadership of the PI and it was built in cooperation with industrial partners EADS Astrium, Lewicki Microelectronic GmbH and Jena Optronik GmbH. The instrument is operated by the DLR Institute of Planetary Research, through ESA/ESOC. The systematic processing of the HRSC image data is carried out at DLR. The scenes shown here were processed by the PI-group at the Institute for Geological Sciences of the Freie Universität Berlin.

• In 2004, a year after Europe's first mission to Mars was launched, the flight dynamics team at ESA's operations center encountered a serious problem. New computer models showed a worrying fate for the Mars Express spacecraft if mission controllers continued with their plans to deploy its giant MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) radar. 25)


Figure 27: Artist's impression of Mars Express. The background is based on an actual image of Mars taken by the spacecraft's HRSC (image credit: ESA/ATG medialab; Mars: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO)

- This extremely sensitive radar instrument spans 40 meters across once fully extended, making it longer than a Space Shuttle orbiter and was built with the direct intention of finding water beneath Mars' surface. By sending out a series of chips between 1.8 and 5.0 Mhz in ‘subsurface' mode would scour the red planet for any signs of water anywhere down to a depth of a few kilometers. A secondary ‘ionosphere' mode at 0.1 to 5.4 Mhz surveyed the electrical conductivity of the Martian upper atmosphere.

- Two ‘radar booms', 20 m long hollow cylinders, 2.5 cm in diameter, and one 7 m boom, were folded up in a box like a concertina. Once the box was opened, all of the stored elastic energy from the glass fiber booms would be released, a little like a jack-in-the-box, and they would lock into a straight line.

- New and updated computer models, however, showed that these long rods would swing back and forth upon release with an even greater amplitude than previously thought, potentially coming into close contact with the delicate parts of the Mars Express body.

Deployment was postponed:


Figure 28: Artist's impression of MARSIS Boom 1 deployed (image credit: ESA)

- Plans were made to get the spacecraft in a ‘robust' mode before the deployment of each boom and while the glass fiber cylinders were extended. After each deployment the control team would conduct a full assessment of the spacecraft, taking up to a few days, before moving onto the next phase.

- The first deployment began on 4 May 2005 with one of the two 20 m ‘dipole' booms, and flight controllers at ESA's operations center quickly realized something wasn't quite right. 12 out of 13 of the boom segments had ‘snapped' into place, but one, possibly number 10, was not in position.

Deployment of the second and third booms was postponed

- Further analysis showed that prolonged storage in the cold conditions of outer space had affected the fiberglass and Kevlar material of the boom. What could be done to heat it up?


Figure 29: MARSIS boom 2 deployment begins (image credit: ESA, CC BY-SA 3.0 IGO)

- Enter the Sun: Mission teams decided to swing the 680 kg spacecraft to a position that would allow the Sun to heat the cold side of the boom. It was hoped that as the cold side expanded in the heat, the unlocked segment would be forced into place.

- One hour later, as contact was reestablished at 04:50 CET on 11 May, detailed analysis showed all segments had successfully locked in place and Boom 1 was successfully deployed!

- Following the rollercoaster rollout of the first antenna, flight controllers spent some time mulling over the events. A full investigation ensued, lessons were learnt, and plans were put in place to prevent the same irregularity from taking place in the next two deployments.

- By 14 June 2005, operators felt confident that they, and Mars Express, were ready to deploy the second boom. At 13:30 CEST the commands were sent.

- This time, Mars Express was set into a slow rotation to last 30 minutes during and after the release of the second 20 m boom. The rotation was planned so that all of the boom's hinges would be properly heated by the Sun before, during, and after deployment.

- Just three hours later and the first signs of success reached ground control, showing that Mars Express had properly re-oriented itself and was pointing towards Earth, transmitting data.

- The data confirmed that the spacecraft was working with two fully and correctly deployed booms, and their deployment had not caused any damage to the spacecraft.

- Not long after, the third boom was deployed, and the full MARSIS setup was complete on Mars Express.


Figure 30: MARSIS fully deployed (image credit: ESA, CC BY-SA 3.0 IGO)

Let the science begin

- Just four months later, and ESA was reporting on the radar's activities. MARSIS radar scientists were collecting data about a highly electrically conducting layer – surveyed in sunlight. They were also continuing the laborious analysis of data in the search for any possible signs of underground water, in a frozen or liquid state.

- Radar science is based on the detection of radio waves, reflected at the boundaries between different materials. Each material interacts with light in a different way, so as the radio wave crosses the boundary between different layers of material, an echo is generated that carries a sort of ‘fingerprint', providing information about the kind of material causing the reflection, including clues to its composition and physical state.


Figure 31: MARSIS prospecting for water (image credit: ESA)

• 17 March 2004: Thanks to ESA's Mars Express, we now know that Mars has vast fields of perennial water ice, stretching out from the south pole of the Red Planet. 26)

- Astronomers have known for years that Mars possessed polar ice caps, but early attempts at chemical analysis suggested only that the northern cap could be composed of water ice, and the southern cap was thought to be carbon dioxide ice.

- Recent space missions then suggested that the southern ice cap, existing all year round, could be a mixture of water and carbon dioxide. But only with Mars Express have scientists been able to confirm directly for the first time that water ice is present at the south pole too.


Figure 32: Map of the Mars south pole, as derived from OMEGA infrared spectral images, showing the bright polar cap, rich in carbon dioxide (light pink), surrounded by water-rich ice, free of carbon dioxide (green to blue), image credit: ESA-OMEGA

- Mars Express made observations with its OMEGA instrument to measure the amounts of sunlight and heat reflected from the Martian polar region. When planetary scientists analyzed the data, it clearly showed that, as well as carbon dioxide ice, water ice was present too.

- The results showed that hundreds of square kilometers of ‘permafrost' surround the south pole. Permafrost is water ice, mixed into the soil of Mars, and frozen to the hardness of solid rock by the low Martian temperatures. This is the reason why water ice has been hidden from detection until now - because the soil with which it is mixed cannot reflect light easily and so it appears dark.

- However, OMEGA looked at the surface with infrared eyes and, being sensitive to heat, clearly picked up the signature of water ice. The discovery hints that perhaps there are much larger quantities of water ice all over Mars than previously thought.

- Using this data, planetary scientists now know that the south polar region of Mars can be split into three separate parts. Part one is the bright polar cap itself, a mixture of 85% highly reflective carbon dioxide ice and 15% water ice.

- The second part comprises steep slopes known as ‘scarps', made almost entirely of water ice, that fall away from the polar cap to the surrounding plains. The third part was unexpected and encompasses the vast permafrost fields that stretch for tens of kilometers away from the scarps.

- The OMEGA observations were made between 18 January and 11 February this year, when it was late summer for the Martian southern hemisphere and temperatures would be at their highest. Even so, that is probably only –130 º Celsius and the ice that Mars Express has observed is a permanent feature of this location.

- During the winter months, scientists expect that carbon dioxide from the atmosphere will freeze onto the poles, making them much larger and covering some of the water ice from view.

- Mars Express and OMEGA will now continue looking for water ice and minerals across the surface of the planet. In May, another Mars Express instrument, the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), will begin collecting data, looking for water underground.

- It will be particularly exciting when MARSIS looks at the south pole because, once planetary scientists know how deep the ice reaches, they will be able to calculate exactly how much water there is. Knowing this is very important to understand how Mars evolved and if it ever harbored life.

• 23 January 2004: Mars Express, ESA's first mission to Mars, will reach its final orbit on 28 January. It has already been producing stunning results since its first instrument was switched on, on 5 January. - The significance of the first data was emphasized by the scientists at a European press conference today at ESA's Space Operations Center, Darmstadt, Germany. 27)

- I did not expect to be able to gather together - just one month after the Mars Orbit Insertion of 25 December – so many happy scientists eager to present their first results", said Professor David Southwood, ESA Director of Science. One of the main targets of the Mars Express mission is to discover the presence of water in one of its chemical states. Through the initial mapping of the South polar cap on 18 January, OMEGA, the combined camera and infrared spectrometer, has already revealed the presence of water ice and carbon dioxide ice.


Figure 33: OMEGA image of the southern polar cap of Mars acquired on 18 January 2004,in all three bands. At right is the visible image; in the middle is carbon dioxide ice; at left is water ice. The two types of ice are mixed in some areas but distinct in others (image credit: ESA/IAS, Orsay; J-P. Bibring)


Figure 34: OMEGA observation of the South polar cap (image credit: ESA/IAS, Orsay; J-P. Bibring)

- This information was confirmed by the PFS (Planetary Fourier Spectrometer), a new high-resolution spectrometer of unprecedented accuracy. The first PFS data also show that the carbon oxide distribution is different in the northern and southern hemispheres of Mars.


Figure 35: PFS shows different CO2 distribution in the northern and southern hemispheres of Mars (image credit: ESA, CNR)

- The MaRS (Mars Radio Science Experiment) instrument, a sophisticated radio transmitter and receiver, emitted a first signal successfully on 21 January that was received on Earth through a 70- meter antenna in Australia after it was reflected and scattered from the surface of Mars. This new measurement technique allows the detection of the chemical composition of the Mars atmosphere, ionosphere and surface.

- ASPERA (Analyzer of Space Plasmas and Energetic Atoms), a plasma and energetic neutral atoms analyzer, is aiming to answer the fundamental question of whether the solar wind erosion led to the present lack of water on Mars. The preliminary results show a difference in the characteristics between the impact of the solar wind area and the measurement made in the tail of Mars. Another exciting experiment was run by the SPICAM instrument (an ultraviolet and infrared spectrometer) during the first star occultation ever made at Mars. It has simultaneously measured the distribution of the ozone and water vapor, which has never been done before, revealing that there is more water vapor where there is less ozone.

- ESA also presented astonishing pictures produced with the High Resolution Stereo Camera (HRSC). They represent the outcome of 1.87 million km2 of Martian surface coverage, and about 100 GB of processed data. This camera was also able to make the longest swath (up to 4000 km) and largest area in combination with high resolution ever taken in the exploration of the Solar System.


Figure 36: This picture was taken by the High Resolution Stereo Camera (HRSC) onboard ESA's Mars Express orbiter, in color and 3D, in orbit 18 on 15 January 2004 from a height of 273 km. The location is east of the Hellas basin at 41º South and 101º East. The area is 100 km across, with a resolution of 12 m per pixel, and shows a channel (Reull Vallis) once formed by flowing water. The landscape is seen in a vertical view, North is at the top (image credit: ESA/DLR/FU Berlin (G. Neukum), CC BY-SA 3.0 IGO)

• 19 January 2004: The image of Figure 37 shows a portion of a 1700 km long and 65 km wide swath which was taken in south-north direction across the Grand Canyon of Mars (Valles Marineris) from two perspectives. It is the first image of this size that shows the surface of Mars in high resolution (12 m/pixel), in color and in 3D. 28)


Figure 37: This HRSC image was acquired on 14 January 2004 on board ESA's Mars Express orbiter under the responsibility of the Principal Investigator Prof. Gerhard Neukum. It was processed by the Institute for Planetary Research of the German Aerospace Center (DLR), also involved in the development of the camera, and by the Institute of Geosciences of the FU (Freie Universität) Berlin. The image shows a portion of a 1700 km-long and 65 km-wide swath taken in the south-to-north direction across the huge Valles Marineris canyon (image credit: ESA/DLR/FU Berlin; G. Neukum)


Figure 38: This picture was taken by the HRSC onboard ESA's Mars Express orbiter, in color and 3D, in orbit 18 on 14 January 2004. It shows a vertical view of a mesa in the true colours of Mars. The summit plateau stands about 3 km above the surrounding terrain. The original surface was dissected by erosion, only isolated mesas remained intact. The large crater has a diameter of 7.6 km (image credit: ESA/DLR/FU Berlin (G. Neukum), CC BY-SA 3.0 IGO) 29)


Figure 39: This picture was taken by the HRSC aboard ESA's Mars Express, in color and 3D, during orbit 18 on 14 January 2004 from a height of 275 km. The location is in Valles Marineris at 5º North and 323º East. The area is 50 km across, at a resolution of 12 m/pixel, and shows mesas and cliffs as well as flow features which indicate erosion by the action of flowing water. The landscape is seen in a vertical view, with north at the bottom (image credit: ESA/DLR/FU Berlin (G. Neukum), CC BY-SA 3.0 IGO) 30)

• Following spacecraft commissioning in January 2004, most instruments began their own calibration and testing, in the process acquiring scientific data. This phase lasted until June 2004, when all the instruments but one began routine operations after the payload commissioning review. The deployment of the MARSIS radar antennas, however, was postponed. The late deployment was initially planned to maximize daylight operations of the other instruments before the pericenter naturally drifts to southern latitudes, which coincides with the nightime conditions required for subsurface sounding by MARSIS. The nominal lifetime of the orbiter is a martian year (687 days), with a potential extension by another martian year to complete global coverage and observe all seasons twice over (Ref. 1).