Minimize Landsat-8

Landsat-8 / LDCM (Landsat Data Continuity Mission)

Spacecraft     Launch    Mission Status     Sensor Complement    Ground Segment    References

The Landsat spacecraft series of NASA represents the longest continuous Earth imaging program in history, starting with the launch of Landsat-1 in 1972 through Landsat-7 with the ETM+ imager (launch April 15, 1999). With the evolution of the program has come an increased emphasis on the scientific utility of the data accompanied by more stringent requirements for instrument and data characterization, calibration and validation. This trend continues with LDCM, the next mission in the Landsat sequence. The enhancements of the Landsat-7 system, e.g., more on-board calibration hardware and an image assessment system and personnel, have been retained and improved, where required, for LDCM. Aspects of the calibration requirements are spread throughout the mission, including the instrument and its characterization, the spacecraft, operations and the ground system. 1) 2)

The following are the major mission objectives: 3)

• Collect and archive moderate-resolution, reflective multispectral image data affording seasonal coverage of the global land mass for a period of no less than five years.

• Collect and archive moderate-resolution, thermal multispectral image data affording seasonal coverage of the global land mass for a period of no less than three years.

• Ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions, in terms of acquisition geometry, calibration, coverage characteristics, spectral and spatial characteristics, output product quality, and data availability to permit studies of land cover and land use change over multi-decadal periods.

• Distribute standard LDCM data products to users on a nondiscriminatory basis and at no cost to the users.

Background: In 2002, the Landsat program had its 30th anniversary of providing satellite remote sensing information to the world; indeed a record history of service with the longest continuous spaceborne optical medium-resolution imaging dataset available anywhere. The imagery has been and is being used for a multitude of land surface monitoring tasks covering a broad spectrum of resource management and global change issues and applications.

In 1992 the US Congress noted that Landsat commercialization had not worked and brought Landsat back into the government resulting in the launches of Landsat 6 (which failed on launch) and Landsat 7. However there was still much conflict within the government over how to continue the program.

In view of the outstanding value of the data to the user community as a whole, NASA and USGS (United States Geological Survey) were working together (planning, rule definition, forum of ideas and discussion among all parties involved, coordination) on the next generation of the Landsat series satellites, referred to as LDCM (Landsat Data Continuity Mission). The overall timeline foresaw a formulation phase until early 2003, followed by an implementation phase until 2006. The goal was to acquire the first LDCM imagery in 2007 - to ensure the continuity of the Landsat dataset [185 km swath width, 15 m resolution (Pan) and a new set of spectral bands]. 4) 5) 6) 7) 8) 9) 10) 11)

The LDCM project suffered some setbacks on its way to realization resulting in considerable delays:

• An initial major programmatic objective of LDCM was to explore the use of imagery purchases from a commercial satellite system in the next phase of the Landsat program. In March 2002, NASA awarded two study contracts to: a) Resource21 LLC. of Englewood, CO, and b) DigitalGlobe Inc. of Longmont, CO. The aim was to formulate a proper requirements set and an implementation scenario (options) for LDCM. NASA envisioned a PPP (Public Private Partnership) program in which the satellite system was going to be owned and operated commercially. A contract was to be awarded in the spring of 2003. - However, it turned out that DigitalGlobe lost interest and dropped out of the race. And the bid of Resource21 turned out to be too high for NASA to be considered.

• In 2004, NASA was directed by the OSTP (Office of Science and Technology Policy) to fly a Landsat instrument on the new NPOESS satellite series of NOAA.

• In Dec. 2005, a memorandum with the tittle "Landsat Data Continuity Strategy Adjustment" was released by the OSTP which directed NASA to acquire a free-flyer spacecraft for LDCM - thus, superseding the previous direction to fly a Landsat sensor on NPOESS. 12)

However, the matter was not resolved until 2007 when it was determined that NASA would procure the next mission, the LDCM, and that the USGS would operate it as well as determine all future Earth observation missions. This decision means that Earth observation has found a home in an operating agency whose mission is directly concerned with the mapping and analysis of the Earth's surface allowing NASA to focus on advancing space technologies and the future of man in space.

Overall science objectives of the LDCM imager observations are:

• To permit change detection analysis and to ensure consistency of the LDCM data with the Landsat series data

• To provide global coverage of the Earth's land surfaces on a seasonal basis

• To acquire imagery at spatial, spectral and temporal resolutions sufficient to characterize and understand the causes and consequences of change

• To make the data available to the user community.

The procurement approach for the LDCM project represents a departure from a conventional NASA mission. NASA traditionally specifies the design of the spacecraft, instruments, and ground systems acquiring data for its Earth science missions. For LDCM, NASA and USGS (the science and technology agency of the Department of the Interior, DOI) have instead specified the content, quantity, and characteristics of data to be delivered.


Figure 1: History of the Landsat program (image credit: NASA) 13)

Legend to Figure 1: The small white arrow within the Landsat-7 arrow on this timeline indicates the collection of data without the Scan Line Corrector.

"The Landsat series of satellites is a cornerstone of our Earth observing capability. The world relies on Landsat data to detect and measure land cover/land use change, the health of ecosystems, and water availability," NASA Administrator Charles Bolden told the Subcommittee on Space Committee on Science, Space and Technology U.S House of Representatives in April 2015.

"With a launch in 2023, Landsat-9 would propel the program past 50 years of collecting global land cover data," said Jeffrey Masek, Landsat-9 Project Scientist at Goddard. "That's the hallmark of Landsat: the longer the satellites view the Earth, the more phenomena you can observe and understand. We see changing areas of irrigated agriculture worldwide, systemic conversion of forest to pasture – activities where either human pressures or natural environmental pressures are causing the shifts in land use over decades."

Landsat-8 successfully launched on Feb. 11, 2013 and the Landsat data archive continues to expand. — Landsat-9 was announced on April 16, 2015. The launch is planned for 2023. 14)

Dec. 31, 2015: NASA has awarded a sole source letter contract to BACT (Ball Aerospace & Technologies Corporation), Boulder, Colo., to build the OLI-2 (Operational Land Imager-2) instrument for the Landsat-9 project. 15)




In April 2008, NASA selected GDAIS (General Dynamics Advanced Information Systems), Inc., Gilbert, AZ, to build the LDCM spacecraft on a fixed price contract. An option provides for the inclusion of a second payload instrument. LDCM is a NASA/USGS partnership mission with the following responsibilities: 16) 17) 18) 19)

• NASA is providing the LDCM spacecraft, the instruments, the launch vehicle, and the mission operations element of the ground system. NASA will also manage the space segment early on-orbit evaluation phase -from launch to acceptance.

• USGS is providing the mission operations center and ground processing systems (including archive and data networks), as well as the flight operations team. USGS will also co-chair and fund the Landsat science team.

In April 2010, OSC (Orbital Sciences Corporation) of Dulles VA acquired GDAIS. Hence, OSC will continue to manufacture and integrate the LDCM program as outlined by GDAIS. Already in Dec. 2009, GDAIS successfully completed the CDR (Critical Design Review) of LDCM for NASA/GSFC. 20) 21)


Figure 2: Artist's rendition of the LDCM spacecraft in orbit (image credit: NASA, OSC)

The LDCM spacecraft uses a nadir-pointing three-axis stabilized platform (zero momentum biased), a modular architecture referred to as SA-200HP. The SA-200HP (High Performance) bus is of DS1 (Deep Space 1) and Coriolis mission heritage. The spacecraft consists of an aluminum frame and panel prime structure.

The spacecraft is 3-axis stabilized (zero momentum biased). The ADCS (Attitude Determination and Control Subsystem) employs six reaction wheels, three torque rods and thrusters as actuators. Attitude is sensed with three precision star trackers (2 of 3 star trackers are active), a redundant SIRU (Scalable Inertial Reference Unit), twelve coarse sun sensors, redundant GPS receivers (Viceroy), and two TAMs (Three Axis Magnetometers).

- Attitude control error (3σ): ≤ 30 µrad

- Attitude knowledge error (3σ): ≤ 46 µrad

- Attitude knowledge stability (3σ): ≤ 0.12 µrad in 2.5 seconds; ≤ 1.45 µrad in 30 seconds

- Slew time: 180º any axis: ≤ 14 minutes, including settling; 15º roll: ≤ 4.5 minutes, including settling.

Key aspects of the satellite performance related to imager calibration and validation are pointing, stability and maneuverability. Pointing and stability affect geometric performance; maneuverability allows data acquisitions for calibration using the sun, moon and stars. For LDCM, an off nadir acquisition capability is included (up to 1 path off nadir) for imaging high priority targets (event monitoring capability).
Also, the spacecraft pointing capability will allow the calibration of the OLI using the sun (roughly weekly), the moon (monthly), stars (during commissioning) and the Earth (at 90° from normal orientation, a.k.a., side slither) quarterly. The solar calibration will be used for OLI absolute and relative calibration, the moon for trending the stability of the OLI response, the stars will be used for Line of Sight determination and the side slither will be an alternate OLI and relative gain determination methodology. 22) 23)

C&DH (Command & Data Handling) subsystem: The C&DH subsystem uses a standard cPCI backplane RAD750 CPU. The MIL-STD-1553B data bus is used for onboard ADCS, C&DH functions and instrument communications. The SSR (Solid State Recorder) provides a storage capacity of 4 Tbit @ BOL and 3.1 Tbit @ EOL.

The C&DH subsystem provides the mission data interfaces between instruments, the SSR, and the X-band transmitter. The C&DH subsystem consists of an IEM (Integrated Electronics Module), a PIE (Payload Interface Electronics), the SSR, and two OCXO (Oven Controlled Crystal Oscillators).


Figure 3: Photo of the EM SSR (Solid State Recorder), image credit: NASA


Figure 4: Block diagram of the C&DH subsystem (image credit: NASA, USGS, Ref. 157)

- The IEM subsystem provides the command and data handling function for the observatory, including mission data management between the PIE and SSR using FSW on the Rad750 processor. The IEM is block redundant with cross strapped interfaces for command and telemetry management, attitude control, SOH (State of Health) data and ancillary data processing, and for controlling image collection and file downlinks to the ground.

- The SSR subsystem provides for mission data and spacecraft SOH storage during all mission operations. The OCXO provides a stable, accurate time base for ADCS fine pointing.

- The C&DH accepts encrypted ground commands for immediate execution or for storage in the FSW file system using the relative time and absolute time command sequences (RTS, ATS respectfully). The commanding interface is connected to the uplink of each S-band transceiver, providing for cross-strapped redundancy to the C&DH. All commands are verified onboard prior to execution. Real-time commands are executed upon reception, while stored commands are placed in the FSW file system and executed under control of the FSW. Command counters and execution history are maintained by the C&DH FSW and reported in SOH telemetry.

- The IEM provides the command and housekeeping telemetry interfaces between the payload instruments and the ADCS components using a MIL-STD-1553B serial data bus and discrete control and monitoring interfaces. The C&DH provides the command and housekeeping interfaces between the CCU (Charge Control Unit), LCU (Load Control Unit) , and the PIE boxes.

- The PIE is the one of the key electrical system interfaces and mission data processing systems between the instruments, the spacecraft C&DH, SSR, and RF communications to the ground. The PIE contains the PIB (Payload Interface Boards ) for OLI (PIB-O) and TIRS (PIB-T).

Each PIB contains an assortment of specialized FPGAs (Field Programmable Gate Arrays) and ASICs, and each accepts instrument image data across the HSSDB for C&DH processing. A RS-485 communication bus collects SOH and ACS ancillary data for interleaving with the image data.


Figure 5: Block diagram of PIB (image credit: USGS, NASA)

- Data compression: Only the OLI data, sent through the PIB-O interface, implements lossless compression, by utilizing a pre-processor and entropy encoder in the USES ASIC. The compression can be enabled or bypassed on an image-by-image basis. When compression is enabled the first image line of each 1 GB file is uncompressed to provide a reference line to start that file. A reference line is generated every 1,024 lines (about every 4 seconds) to support real-time ground contacts to begin receiving data in the middle of a file and decompressing the image with the reception of a reference line.

- XIB (X-band Interface Board): The XIB is the C&DH interface between the PIE, SSR, and X-band transmitter, with the functional data path shown in Figure 6.

The XIB receives real-time data from the PIE PIB-O and PIB-T and receives stored data from the SSR via the 2 playback ports. The XIB sends mission data to the X-band transmitter via a parallel LVDS interface. The XIB receives a clock from the X-band transmitter to determine the data transfer rates between the XIB and the transmitter to maintain a 384 Mbit/s downlink. The XIB receives OLI realtime data from the PIB-O board, and TIRS real-time data from the PIB-T board across the backplane. The SSR data from the PIB-O and PIB-T interfaces are multiplexed and sent to the X-Band transmitter through parallel LVDS byte-wide interfaces.


Figure 6: X-band mission data flow (image credit: USGS, NASA)

- SSR (Solid Ste Recorder): The SSR is designed with radiation hard ASIC controllers, and up-screened commercial grade 4GB SDRAM (Synchronous Dynamic Random Access Memory) memory devices. Protection against on-orbit radiation induced errors is provided by a Reed-Solomon EDAC (Error Detection and Correction) algorithm. The SSR provides the primary means for storing all image, ancillary, and state of health data using a file management architecture. Manufactured in a single mechanical chassis, containing a total of 14 memory boards, the system provides fully redundant sides and interfaces to the spacecraft C&DH.

The spacecraft FSW (Flight Software) plays an integral role in the management of the file directory system for recording and file playback. FSW creates file attributes for identifier, size, priority, protection based upon instructions from the ground defining the length of imaging in the interval request, and its associated priority. FSW also maintains the file directory, and creates the ordered lists for autonomous playback based upon image priority. FSW automatically updates and maintains the spacecraft directory while recording or performing playback, and it periodically updates the SSR FSW directory when no recording is occurring to synchronize the two directories (Ref. 157).

TCS (Thermal Control Subsystem): The TCS uses standard Kapton etched-foil strip heaters. In general, a passive, cold-biased system is used for the spacecraft. Multi-layer insulation on spacecraft and payload as required. A deep space view is provided for the instrument radiators.

EPS (Electric Power Subsystem): The EPS consists of a single deployable solar array with single-axis articulation capability and with a stepping gimbal. Triple-junction solar cells are being used providing a power of 4300 W @ EOL. The NiH2 battery has a capacity of 125 Ah. Use of unregulated 22-36 V power bus.

The onboard propulsion subsystem provides a total velocity change of ΔV = 334 m/s using eight 22 N thrusters for insertion error correction, altitude adjustments, attitude recovery, EOL disposal, and other operational maintenance as necessary.

The spacecraft has a launch mass of 2780 kg (1512 kg dry mass). The mission design life is 5 years; the onboard consumable supply (386 kg of hydrazine) will last for 10 years of operations.

Spacecraft platform

SA-200HP (High Performance) bus

Spacecraft mass

Launch mass of 2780 kg; dry mass of 1512 kg

Spacecraft design life

5 years; the onboard consumable supply (386 kg of hydrazine) will last for 10 years of operations

EPS (Electric Power Subsystem)

- Power: 4.3 kW @ EOL (End of Life)
- Single deployable solar array with single-axis articulation capability
- Triple-junction solar cells
- NiH2 battery with 125 Ah capacity
- Unregulated 22 V - 36 V power bus
- Two power distribution boxes

ADCS (Attitude Determination &
Control Subsystem)

- Actuation: 6 reaction wheels and 3 torque rods
- Attitude is sensed with 3 precision star trackers, a redundant SIRU (Scalable Inertial Reference Unit),
12 coarse sun sensors, redundant GPS receivers (Viceroy), and 2 TAMs (Three Axis Magnetometers)
- Attitude control error (3σ): ≤ 30 µrad
- Attitude knowledge error (3σ): ≤ 29 µrad
- Attitude knowledge stability (3σ): ≤ 0.12 µrad in 2.5 seconds
- Attitude jitter: ≤ 0.28 µrad, 0.1-1.0 Hz
- Slew time, 180º pitch: ≤ 14 minutes, inclusive settling
- Slew time, 15º roll: ≤ 4.5 minutes, inclusive settling

C&DH (Command & Data Handling)

- Standard cPCI backplane RAD750 CPU
- MIL-STD-1553B data bus
- Solid state recorder provides a storage capacity of 4 TB @ BOL and 3.1 TB @ EOL

Propulsion subsystem

- Total velocity change of ΔV = 334 m/s using eight 22 N thrusters
- Hydrazine blow-down propulsion module

Table 1: Overview of spacecraft parameters


Figure 7: Two views of the LDCM spacecraft (without solar arrays) and major components (image credit: NASA, USGS)

RF communications: Earth coverage antennas are being used for all data links. The X-band downlink uses lossless compression and spectral filtering. The payload data rate is 440 Mbit/s. The X-band RF system consists of the X-band transmitter, TWTA (Travelling Wave Tube Amplifier), DSN (Deep Space Network) filter, and an ECA (Earth Coverage Antenna). The serial data output is set at 440.825 Mbit/s and is up-converted to 8200.5 MHz. The TWTA amplifies the signal such that the output of the DSN filter is 62 W. The DSN filter maintains the signal's spectral compliance. An ECA provides nadir full simultaneous coverage, utilizing 120º half-power beamwidth, for all in view ground sites below the spacecraft's current position with no gimbal or actuation system. The system is designed to handle up to 35 separate ground contacts per day as forecasted by the DRC-16 (Design Reference Case-16).

The X-band transmitter is a single customized unit, including the LDPC FEC algorithms, the modulator, and up converter circuits. The transmitter uses a local TXCO (Thermally Controlled Crystal Oscillator) as a clock source for tight spectral quality and minimum data jitter. This clock is provided to the PIE XIB to clock mission data up to a 384Mbit/s data rate to the transmitter. The X-band transmitter includes an on-board synthesized clock operating at 441.625 Mbit/s coded data rate using the local 48 MHz clock as a reference. Using the on-board FIFO buffer, this architecture provides a continuous data flow through the transmitter (Ref. 157).

The S-band is used for all TT&C functions. The S-band uplink is encrypted providing data rates of 1, 32, and 64 kbit/s. The S-band downlink offers data rates of 2, 16, 32, RTSOH; 1 Mbit/s SSOH/RTSOH GN; 1 kbit/s RTSOH SN. Redundant pairs of S-band omni's provide transmit/receive coverage in any orientation. The S-band is provided through a typical S-band transceiver, with TDRSS (Tracking and Data Relay Satellite System) capability for use during launch and early orbit and in case of spacecraft emergencies.

Onboard data transmission from an earth-coverage antenna:

• Real-time data received from PIE (Payload Interface Electronics) equipment

• Play-back data from SSR (Solid State Recorder)

• To three LGN (LDCM Ground Network) stations

- NOAA Interagency Agreement (IA) to use Gilmore Creek Station (GLC) near Fairbanks, AK

- Landsat Ground Station (LGS) at USGS/EROS near Sioux Falls, SD

- NASA contract with KSAT for Svalbard; options for operational use by USGS (provides ≥ 200 minutes of contact time)

• To International Cooperator ground stations (partnerships of existing stations currently supporting Landsat).


Figure 8: Photo of the EM X-band transponder (left) and AMT S-band transponder (right), image credit: NASA


Figure 9: Alternate view of the deployed LDCM spacecraft showing the calibration ports of the instruments TIRS and OLI (image credit: NASA/GSFC)


Figure 10: The LDCM spacecraft with both instruments onboard, OLI and TIRS (image credit: USGS) 24)


Launch: The LDCM mission was launched on February 11, 2013 from VAFB, CA. The launch provider was ULA (United Launch Alliance), a joint venture of Lockheed Martin and Boeing; use of the Atlas-V-401 the launch vehicle with a Centaur upper stage. 25) 26)

Note: Initially, the LDCM launch was set for July 2011. However, since this launch date was considered as too optimistic, NASA changed the launch date to the end of 2012. This new launch delay buys some time for an extra sensor with TIR (Thermal Infrared) imaging capabilities.

Orbit: Sun-synchronous near-circular orbit, altitude = 705 km, inclination = 98.2º, period = 99 minutes, repeat coverage = 16 days (233 orbits), the nominal LTDN (Local Time on Descending Node) equator crossing time is at 10:00 hours. The ground tracks will be maintained along heritage WRS-2 paths. At the end of the commissioning period, LDCM is required to be phased about half a period ahead of Landsat 7. 27)