Minimize ISS Utilization: Sample imagery

ISS Utilization: Sample imagery taken by astronauts on and from the ISS + Events

This file is a loose collection of some imagery samples taken by astronauts off and from the ISS (International Space Station). Astronauts who experience Earth from orbit often report feelings of awe and wonder, of being transformed by what they describe as the magic such a perspective brings. This phenomenon is called the "overview effect." The short descriptions in the following entries are presented in reverse order .

 

Note: As of June 2019, the previously large ISS-Imagery2 and ISS-Imagery files have been split into four files, to make the file handling manageable for all parties concerned, in particular for the user community.

This article covers the ISS-Imagery plus some status in the period 2019

ISS-Imagery in the period 2018

ISS-Imagery in the period 2017-2016

ISS-Imagery in the period 2015-1998

 


 

Mission status and imagery of 2019

• November 19, 2019: The first spacewalk to service the Alpha Magnetic Spectrometer (AMS) could not have gone better. Lead spacewalker ESA astronaut Luca Parmitano is imaged here hitching a ride on the International Space Station's 16-meter long robotic arm to kick off the first of four ventures to service the particle physics detector on 15 November. 1)

- While all spacewalks are a carefully planned and detailed affair, the four spacewalks for AMS are exceptionally difficult as the bus-sized dark matter detector was never designed to be maintained in space. But after three successful years of delivering ground breaking science, the decision was made to extend its lifetime.

- The cooling pumps for AMS-02 need maintenance and without them it will no longer be able to collect data on the cosmic rays that are bombarding our planet. The first question spacewalk designers had to answer whether this was even possible.

- The first spacewalk proved it was not only possible, but thanks to the planning and trained that began as early as 2017, Luca and his spacewalking partner Andrew Morgan could achieve more than scheduled – setting them in good stead for the next phase.

- The spacewalk began, as they all do, with "pre-breathing" for up to two hours. Similar to scuba divers, astronauts can suffer from the ‘bends': quickly changing pressure can turn the nitrogen in human bodies into bubbles with serious symptoms. To avoid this, astronauts breathe pure oxygen to purge their bodies of nitrogen.

- Luca and NASA astronaut Drew Morgan left the depressurized Quest airlock at 13:10 CET (12:10 GMT), with Luca grabbing the ride to AMS on the robotic arm controlled by NASA astronaut Jessica Meir while Drew ferried handrails and equipment by hand to the worksite.

- The main task of this spacewalk was to remove the debris shield covering AMS, with an estimated three hours portioned for this task. Luca and Drew managed to jettison the debris shield to burn up safely in Earth's atmosphere well ahead of schedule.

- Luca and Drew also installed three handrails in the vicinity of AMS to prepare for the next spacewalks and removed zip ties on the AMS' vertical support strut.

- Amazingly, the duo were still well ahead of the six hours planned for the main task of removing the debris shield.

- When time permits, mission control give spacewalkers some "get ahead" tasks. Although there were no get-ahead tasks planned for this spacewalk the duo was so far ahead of schedule that mission control agreed they continue work originally planned for the second AMS spacewalk. Luca removed the screws from a carbon-fibre cover under the insulation and passed the cover to Drew to jettison once again.

- The pair cleaned up, took some photos of their killer views, gathered tools, and made their way back to the airlock, clocking in 6 hours and 39 minutes for this promising start to AMS maintenance.

ISSImagery2019_Auto5E

Figure 1: Luca Parmitano and NASA astronaut Drew Morgan left the depressurized Quest airlock at 13:10 CET (12:10 GMT), with Luca grabbing the ride to AMS on the robotic arm (Canadarm2) controlled by NASA astronaut Jessica Meir while Drew ferried handrails and equipment by hand to the worksite (image credit: ESA/NASA)

ISSImagery2019_Auto5D

Figure 2: NASA astronauts (from left ) Jessica Meir and Christina Koch are at the robotics workstation controlling the Canadarm2 robotic arm to support the first spacewalk to repair the Alpha Magnetic Spectrometer (AMS). Astronauts Luca Parmitano of ESA (European Space Agency) and Andrew Morgan of NASA worked six hours and 39 minutes in the vacuum of space during the first of at least four planned AMS repair spacewalks (image credit: NASA) 2)

ISSImagery2019_Auto5C

Figure 3: NASA astronaut Andrew Morgan waves as he is photographed (Nov. 15, 2019) seemingly camouflaged among the Alpha Magnetic Spectrometer (lower left) and other International Space Station hardware during the first spacewalk to repair the cosmic particle detector (image credit: NASA) 3)

• November 17, 2019: Both of these photos of Madagascar were taken from the ISS (International Space Station) by astronauts using handheld digital cameras. The photo of Figure 4 was taken using a 10 mm lens, sometimes called a fisheye lens. The photo of Figure 5 was captured using a 58 mm lens, making this field of view slightly more zoomed in than what a human eye sees. For comparison, a smartphone camera usually has a field of view equivalent to a 24 to 30 mm lens on a Digital Single Lens Reflex (DSLR) camera. 4)

- Smaller lens sizes are helpful when astronauts want to photograph broad geographic regions on Earth. The first photo captures the entire island of Madagascar as viewed while looking down through the round center window in the ISS Cupola. The optical design of the small lens size causes Madagascar to appear distorted in comparison to a geometrically corrected map view. Spacecraft parts, including a docked Russian Soyuz capsule and the ISS solar panels, appear around the photo perimeter.

- The photo of Figure 5 was taken using a 58 mm lens while the ISS was above a point on Earth's surface about 580 km (360 miles) south-southwest of Madagascar. From its southernmost tip to its northern coasts, Madagascar stretches 1,500 km (~1,000 miles). When viewed from the ISS altitude of 360 km (225 miles) above Earth's surface, the horizon is a bit more than 2,300 km (1,400 miles) away.

- The whole island is captured in both photos; however, the northern end of Madagascar is indistinguishable in the 58 mm shot due to cloud cover and the highly oblique viewing angle. Since the fisheye lens has a much wider field of view and was used when ISS was directly over the island (indicated by the spacecraft nadir label on the image), all of Madagascar was captured in a single but more visibly distorted shot.

ISSImagery2019_Auto5B

Figure 4: Different lens sizes and camera angles provide wildly different views of Madagascar. The astronaut photograph ISS053-E-202989 was acquired on 6 November 2017, with a Nikon D4 digital camera using a 10 mm lens. Both images were provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. This image was taken by members of the Expedition 53 crew (image credit: NASA Earth Observatory, caption by Andrea Meado)

ISSImagery2019_Auto5A

Figure 5: The astronaut photograph ISS059-E-46155 was acquired on 6 May 2019 with a Nikon D5 digital camera using a 58 mm lens. Both images were provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. This image was taken by members of the Expedition 59 crew (image credit: NASA Earth Observatory, caption by Andrea Meado)

• November 13, 2019: Looking down from the International Space Station on the Italian coastline through a powerful (1150 millimeter) zoom lens, an astronaut shot this detailed photograph of the city of Taranto. It is Italy's major southern port and naval base. These facilities face into the outer bay, locally known as the Mar Grande, where ships are anchored. The Cheradi Islands form a small archipelago that encircles the Mar Grande. 5)

- From docks on the north side of Mar Grande, the city exports petroleum and steel products from a nearby industrial zone. The naval yards lie on the east side. The old town, dating from Roman times, occupies the tip of the promontory that separates Taranto's outer bay from the inner bay, Mar Piccolo.

- A wider view from 2014 shows Taranto's location in the northern angle of the Gulf of Taranto.

ISSImagery2019_Auto59

Figure 6: Italy's major southern port and naval base has a history dating back to Roman times. This astronaut photograph ISS052-E-8449 was acquired on June 25, 2017, with a Nikon D4 digital camera using an 1150 millimeter lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 52 crew (image credit: NASA Earth Observatory, caption by Justin Wilkinson)

• November 12, 2019: Four spacewalks in the coming weeks means a lot of preparation work. ESA astronaut Luca Parmitano is gearing up the first in a series of historic EVAs (Extra Vehicular Activities) taking place 15 November. 6)

- The spacewalks are to service the AMS-2 (Alpha Magnetic Spectrometer), a dark matter hunter that is providing researchers with data on cosmic ray particles well beyond its three-year mission.

- Installed outside the International Space Station in 2011, the instrument has recorded over 140 billion particles to date along with their mass, velocity, and charge and direction of travel. This data is helping scientists track down and understand the sources of dark matter, an invisible energy that makes up roughly 90% of the universe.

- As expected, the harsh environment of space began to wear down the facility. One by one, the cooling pumps keeping a vital detector at a constant temperature began to fail, affecting the data collection. — Plans for spacewalks to upgrade the pumps have been in the making for years to keep the science going.

- Never intended to be serviced in orbit, the AMS maintenance will be complex.

- For starters, AMS-02 has over 300,000 data channels. There are also no handrails or foot restraints installed around the instrument to access the cooling system that needs maintenance. New tools are also needed, as astronauts have never cut and reconnected fluid lines in a bulky spacesuit before.

- Luca trained well in advance for these spacewalks at NASA's Johnson Space Center in Houston, USA. New tools and procedures were extensively tested, with a lot of know-how drawn from the last series of complex spacewalks to extend the life of a valuable space instrument, the Hubble Space telescope.

- Now that the latest Cygnus cargo supply mission has brought the final tools needed, Luca and NASA astronaut Andrew Morgan are ready to go.

- Luca will play a leading role as EV-1, wearing a white spacesuit with red stripes while Andrew wears the white spacesuit with no stripes. It is the first time a European astronaut has held the lead position.

- The pair will be supported by NASA astronauts Christina Koch and Jessica Meir who will operate the Canadarm2 robotic arm from inside the Station. This will help position the astronauts around their hard-to-reach work site, located on top of the Station's S3 Truss structure between a pair of solar arrays and radiators.

- The entire spacewalk is expected to take around six hours and it will set the scene for at least three more.

ISSImagery2019_Auto58

Figure 7: Luca is preparing for his EVA (Extra Vehicular Activity) on 15 November. He is pictured here creating tape flags that will be used to mark tubes during the spacewalks (image credit: ESA/NASA)

• November 6, 2019: A thin veil of dust blows across the low-lying region south of the Parapeti and Guapay (Grande) Rivers in southern Bolivia. An astronaut shot this photograph as strong winds blew parallel to the Andean foothills over a dried riverbed, creating streaks of airborne sediment. While the dust obscures much of the land below, blocky plots of deforestation and agricultural development are visible along the rivers through the haze. 7)

- The winter season in the Bolivian lowlands—May to October,—is often hot and dry. With little to no rainfall, the rivers dry up and become vulnerable to aeolian processes such as wind erosion and transport of sediments as dust plumes. Strong winds can keep the sediment aloft for long periods of time, leading to transport and deposition further to the south.

- The Andean foothills act as a barrier, preventing the airborne dust from traveling west. However, there is little need for it on the other side of the mountains. To the west of the area in this image, the large salt flats of Bolivia provide material for far greater dust storms.

ISSImagery2019_Auto57

Figure 8: The astronaut photograph ISS056-E-156989 was acquired on August 23, 2018, with a Nikon D5 digital camera using a 122 millimeter lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 56 crew (image credit: NASA Earth Observatory, caption by Sara Schmidt and Andrea Meado)

• October 27, 2019: This photograph of the Alaskan Peninsula, shot by an astronaut from the International Space Station (ISS), offers an oblique view of the Katmai National Park. Many of the mountains are active volcanoes—part of the Aleutian Range—and several are topped by glaciers. 8)

- Just northwest of the coastal mountain range lies the Valley of Ten Thousand Smokes, a river valley that was buried by an eruption of Novarupta volcano in 1912. It was the largest volcanic eruption of the 20th Century.

- Large quantities of hot ash and pumice were ejected during the eruption. The rain of hot debris buried the snow and glacial streams, immediately flashing them into steam. Those volcanic deposits remained hot for years afterwards and often converted subsequent precipitation and surface stream flows into steam—hence the name Valley of Ten Thousand Smokes. During the same eruption, the summit of Mount Katmai collapsed, forming a deep caldera that has filled with water as a crater lake.

- Katmai National Park has multiple sediment-rich rivers that deliver freshwater to the ocean. These rivers and streams provide avenues for anadromous fish species, especially salmon, to migrate and spawn upstream in the park. The abundance of fish is important for some of Katmai's other residents: bald eagles and brown bears.

ISSImagery2019_Auto56

Figure 9: The astronaut photograph ISS060-E-33914 was acquired on August 11, 2019, with a Nikon D5 digital camera using a 500 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 60 crew (image credit: NASA Earth Observatory, caption by Laura Phoebus)

• October 24, 2019: As the Sun sets in Chicago, the city begins to bustle with nightlife—and it's not just from partying humans. Cats, coyotes, possums, raccoons, rats, and skunks all come out of their urban homes to hunt, mate, and roam the city. But a recent study shows that these behaviors can be altered by artificial lighting—street lamps, flood lights, and illumination around homes and businesses. 9)

ISSImagery2019_Auto55

Figure 10: NASA Earth Observatory image by Joshua Stevens, using data courtesy of Schirmer, A. E., et al. (2019). The astronaut photograph ISS037-E-8303 was acquired on October 9, 2013, with a Nikon D3S digital camera using a 50 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 37 crew. The image has been cropped and enhanced to improve contrast, and lens artifacts have been removed (image credit: Story by Kasha Patel)

- The study, led by researchers from Northeastern Illinois University, showed that the city's nocturnal animals roamed less and were less active as nighttime light levels increased. Researchers started seeing significant changes in animal behavior in areas with lighting as dim as 6 lux, a unit of measurement that describes the amount of light falling on the surface. For reference, 6 lux is slightly dimmer than Earth's surface at twilight; typical kitchen lighting is around 500 lux.

- "If larger nocturnal animals are less active around the city at night, their movement patterns can be altered temporally and spatially," said Aaron Schirmer, lead author of the paper and a biology professor at Northeastern Illinois University. "That would have the potential to affect the food web in ways that we might not fully understand yet."

ISSImagery2019_Auto54

Figure 11: January 19, 2008 - October 9, 2013. Using this information, the team mapped where electric light pollution in Chicago is likely to have the largest effect on wildlife. This image shows the green spaces in Chicago and whether they are above or below light levels of 6 lux. Land cover data come from the Chicago Metropolitan Agency of Planning. To determine the lux levels, the researchers used the photos from the ISS, measuring the value of each pixel to determine which areas were above and below 6 lux.

- While other research has shown a significant increase in artificial lighting around natural and semi-natural ecosystems, Schirmer and colleagues sought to measure the actual effects on animal behavior through a series of lab and field observations. First, the team mapped light pollution across the Chicago metropolitan area. They traveled around the city measuring light intensity in various areas using handheld light meters. Then they combined and calibrated the ground measurements with photographs shot from the International Space Station (ISS) by astronauts. The image of Figure 10 shows a photo of Chicago shot from ISS on October 9, 2013.

- Once the researchers measured the range of light levels in the city, they recreated the conditions in a series of lab experiments with mice. By slowly increasing the light exposure to correspond to the common nighttime light levels found in Chicago, they found that locomotor activity (in this case, a mouse running on a wheel) decreased as light levels increased. The light levels in the tests ranged from less than 0.01 lux (a quarter Moon) to 121 lux (a very cloudy day).

- The team then took the collected data and ran an analysis to learn when animal behavior started to change. After running statistical models, researchers consistently observed behavior changes starting at 6 lux—brighter than a full Moon (0.108 lux) and dimmer than a twilight glow (10.8 lux). "As far as nighttime lights go, 6 lux is still fairly bright," Schirmer said. "I would expect some animals would have behavior changes even below that threshold."

- Schirmer and colleagues compared their lab results with observations of wildlife around the city. They used camera trap data from the Lincoln Park Zoo, which has collected more than 1 million photos of Chicago-area wildlife over the past decade. As with the lab mice, the opossums, raccoons, skunks, and other animals of the city showed a decrease in movement when exposed to high levels of city light. Nocturnal species demonstrated 19.6 percent more activity in darker locations than in brighter areas. Again, the researchers observed behavioral changes starting in areas approaching 6 lux.

- Using this information, the team mapped where electric light pollution in Chicago is likely to have the largest effect on wildlife. Figure 11 shows the green spaces in Chicago and whether they are above or below light levels of 6 lux. Land cover data come from the Chicago Metropolitan Agency of Planning. To determine the lux levels, the researchers used the photos from the ISS, measuring the value of each pixel to determine which areas were above and below 6 lux.

- The researchers found that about 36 percent of the green space around Chicago is regularly above 6 lux (shown on the map, Figure 11, in purple). That reduction in nighttime darkness could significantly affect wildlife behavior. Schirmer also noted that city lights affect even the larger green areas, subdividing them into darker and brighter sections and shrinking the size of suitable habitats for animals.

- "We want this study to raise awareness of the impact of electric light pollution on wildlife," said Schirmer. "From an urban planning perspective, it is important to think about ways in which nighttime light impacts animals and to find creative solutions that work for people and the wildlife."

• October 23, 2019: This composite image was made from more than 400 photos taken as the International Space Station traveled from Namibia toward the Red Sea. 10)

- The image of Figure 12 of star trails was compiled from time-lapse photography taken by NASA astronaut Christina Koch while onboard the International Space Station (ISS). This composite image was made from more than 400 individual photos taken over a span of about 11 minutes as the ISS traveled from Namibia toward the Red Sea.

- The image includes many natural and artificial lights that an astronaut may see during an orbit at night. On the ground, stationary features like cities appear as pale yellow-white dotted streaks; with each dot marking another frame captured. Many of the thinner dotted lines with darker orange hues are fires burning across Angola and the Democratic Republic of the Congo.

- Looking northward, thunderstorms cover much of central Africa. Bright white lightning flashes are captured in many of the compiled frames. Lightning stretches as far at the eye can see, clearly outlining Earth's limb. Above the horizon there is a faint green-yellow tracing of the upper atmosphere known as airglow.

- Perhaps the most striking features of this image are the star trails encircling the background around a point in the upper left corner of the image. "This point is essentially normal (perpendicular) to the ISS orbital plane, directly out of the port side of the vehicle based on the spacecraft silhouettes," said Matthew Osvog of NASA Johnson Space Center's ISS Flight Operations Pointing console.

- This means the stars close to this perpendicular vector (near the upper left) appear stationary during the short duration of the time-lapse sequence, while stars with increasing angular distance (further away from the normal vector) trace out large circles as the ISS rotates in inertial space and while orbiting the Earth. As seen in this composite image, the star trails eventually get large enough to dip behind Earth's limb. A few satellites are crossing in front of the star trails, traveling along different orbits.

ISSImagery2019_Auto53

Figure 12: The astronaut photographs ISS060-E-5207 to 5658 were acquired on July 5, 2019, with a Nikon D5 digital camera using a 28 mm lens and are provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The images were taken by a member of the Expedition 60 crew (image credit: NASA Earth Observatory, caption by Andrea Meado)

• October 18, 2019: At 2:55 p.m. EDT, Expedition 61 Flight Engineers Christina Koch and Jessica Meir of NASA concluded their spacewalk, the first with only women. During the 7-hour, 17-minute spacewalk, the two NASA astronauts completed the replacement a failed power charging component, also known as a battery charge-discharge unit (BCDU). The BCDU regulates the charge to the batteries that collect and distribute solar power to the orbiting lab's systems. Mission control activated the newly installed BCDU and reported it is operating properly. 11)

- The astronauts were also able to accomplish some get-ahead tasks including installation of a stanchion on the Columbus module for support of a new external ESA (European Space Agency) payload platform called Bartolomeo scheduled for launch to the station in 2020.

- Commander Luca Parmitano of ESA and NASA Flight Engineer Andrew Morgan assisted the spacewalkers. Parmitano operated the Canadarm2 robotics arm and Morgan provided airlock and spacesuit support.

- It was the eighth spacewalk outside the station this year. Space station crew members have now conducted 221 spacewalks in support of assembly and maintenance of the orbiting laboratory. Spacewalkers have spent a total of 57 days, 20 hours, and 29 minutes working outside the station.

- It was the first spacewalk for Meir and the fourth for Koch, who now has spent a total of 27 hours and 48 minutes spacewalking. It is the first spaceflight for both women, who were selected in the 2013 astronaut class that had equal numbers of women and men. Koch arrived to the orbiting laboratory in March 2019 and will remain in space for an extended duration mission of 11 months to provide researchers the opportunity to observe effects of long-duration spaceflight on a woman to prepare for human missions to the Moon and Mars.

- Meir became the 15th woman to spacewalk, and the 14th U.S. woman. It was the 43rd spacewalk to include a woman. Women have been performing spacewalks since 1984, when Russian cosmonaut Svetlana Savitskaya spacewalked in July and NASA astronaut Kathryn Sullivan spacewalked in October.

- The faulty BCDU is due to return to Earth on the next SpaceX Dragon resupply ship for inspection. Station managers will reschedule the three battery replacement spacewalks for a future date. In the meantime, the five planned spacewalks to repair a cosmic particle detector, the Alpha Magnetic Spectrometer, are still on the calendar for November and December.

ISSImagery2019_Auto52

Figure 13: NASA spacewalkers Christina Koch (foreground, suit with red stripe) and Jessica Meir (suit with no stripes) replaced a failed BCDU (Battery Charge-Discharge Unit) with a new one during a 7-hour, 17-minute spacewalk (image credit: NASA TV)

• October 14, 2019: For eight days the International Space Station operated at full capacity with nine astronauts. With the extra set of hands in space the science teams on Earth got busy scheduling the astronauts' days to get the most research time out of their time in orbit. 12)

- United Arab Emirates astronaut Hazzaa Al Mansoori completed a number of experiments for European researchers, adding more data to the pool of results. Just a day after arriving, Hazzaa set up the Fluidics experiment that consists of two transparent spheres containing liquid that can mimic satellite fuel tanks as well as help researchers understand ocean currents.

ISSImagery2019_Auto51

Figure 14: Sloshing fluids. Have you ever tried walking while carrying a full cup of water? Your steps invariably cause the water to slosh about, making spills hard to avoid. Now imagine a satellite turning – the fuel inside will slosh, affecting the satellite's stability (image credit: CNES–E. Grimault, 2016)

- Hazzaa conducted his second and last session of the Time experiment on 3 October. Time flies, the expression goes, but what happens to time when you are flying at 28,800 km/h around Earth? Hazzaa wore a virtual reality headset to avoid distraction and followed onscreen instructions to test his reaction speed and estimation of time. Tasks included guessing how long a blue square remained on the screen, pressing a button for a set number of seconds and pressing stop after estimating the passing of a minute.

ISSImagery2019_Auto50

Figure 15: Screenshot from the virtual reality headset used for the Time experiment on the International Space Station. Since perceptions of time and space are believed to share the same neural processes, and research on depth perception in weightlessness has shown that astronauts often underestimate distance, scientists speculate that for astronauts time also flies in space. The Time experiment on the International Space Station investigates the claim that time subjectively speeds up in microgravity. Astronauts gauge how long a visual target appears on a laptop screen and their reaction times to these prompts recorded to process speed and attention. Scientists are not only collecting data on the neurological mechanisms at work here. The relativity of time, after all, implies that it is all in your head. As much as we can objectively measure and plot time, how individual humans perceive it is not just neurological but also psychological (image credit: CNES/CADMOS)

- Time probably flew for Hazzaa who has already returned to Earth alongside NASA astronaut Nick Hague and Russian commander Alexei Ovchinin in Soyuz MS-12.

EveryWear is everywhere

- The astronaut app EveryWear was developed for Thomas Pesquet's Proxima mission in 2016, and it is now a useful aid for recording all kinds of scientific data. On 2 October, ESA astronaut Luca Parmitano and NASA astronaut Drew Morgan wrapped up their third and last session of the Acoustic Diagnostics experiment. The session needed to be scheduled on their 80th day in space. Similar to the Time experiment but with sound, the astronauts wore headphones and answered questions on what they heard using the EveryWear app. The experiment will assess how hearing is affected in weightlessness as well as measure background noise on the International Space Station.

• October 13, 2019: An astronaut aboard the International Space Station (ISS) focused a long lens on a brightly colored group of fields in the Kursk region of Russia, not far north of the Ukrainian border. Kursk lies at the heart of Russia's "Black Belt" agricultural region, so-named for its rich black soils. 13)

- The bright fields result from the flowers of a ripening crop of rapeseed (also known as oilseed rape), a crop cultivated for its oil-rich seeds. (Brilliant rapeseed flowers have captured astronaut attention before, as in this shot of the Paris region.)

- The jagged boundaries of the fields are forested stream courses that remain unplowed in order to prevent soil erosion. Two small towns stand nearby: Kotelnikovo, to the west of the fields (north is to the right), and Malye Kryuki, to the east, near a dark-toned reservoir. For a sense of scale, the yellow fields extend for nearly 8 kilometers from left to right in the image.

- Photographs of Earth taken from the ISS with commercial, off-the-shelf digital cameras do not currently include geolocation information that can be used to precisely determine the geographic locations of features in an image. This photograph was one of the more difficult to locate by a ground-based analyst because it was taken with a long lens (which magnifies the view, but therefore shows a small area on the ground), and because the nadir point of the spacecraft was more than 300 kilometers to the southeast.

ISSImagery2019_Auto4F

Figure 16: Yellow flowers brighten the landscape of southwestern Russia. The astronaut photograph ISS052-E-10195 was acquired on June 28, 2017, with a Nikon D4 digital camera using a 1150 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 52 crew (image credit: NASA Earth Observatory, caption by Justin Wilkinson)

• October 10, 2019: European Space Agency (ESA) astronaut Luca Parmitano is preparing to step out into space for his first spacewalk of the Beyond mission. 14)

- Scheduled for 25 October, he will work with NASA astronaut Jessica Meir to replace nickel hydrogen batteries with newer lithium ion batteries and install battery adapter plates on the Space Station's Port-6 truss structure.

- This is a process fellow ESA astronaut Thomas Pesquet knows well, having replaced batteries on another power channel during his Proxima mission. We asked him to tell us more about the task and how the crew will prepare.

The lead-up

- Known to the crew as an EVA (Extravehicular Activity), each spacewalk is planned up to a year in advance.

- On Station, preparation begins around two weeks ahead, with a set of procedures called the "Road to EVA".

- "Preparing for a spacewalk will make up 2-3 hours of your schedule every day during this time," Thomas explains. "The crew often carry out prep in their personal time as well."

The big day

- Live coverage of Luca and Jessica's spacewalk starts on NASA TV at 10:30 GMT (12:30 CEST), but the crew will begin their preparation around 6:00. And there is to be no showering, shaving, or applying deodorant for at least a day in advance, as any remnants of these products could mix with the pure oxygen inside the suit and pose a fire risk.

- Astronauts wear a liquid cooling garment underneath their spacesuit. This is connected to the water system that keeps them cool, or warm, by circulating water around their body. They also don a medical monitor and put a dosimeter in their pocket to measure radiation before entering the hatch.

- Thomas describes the process inside the airlock as "like scuba diving in reverse", as astronauts breathe in a controlled way to rid their blood of nitrogen and adjust to lower pressure.

- A third crew member, known as the Intravehicular (IV) crew member, is also isolated in the airlock, before it goes to vacuum. This person helps the astronauts with their oxygen masks and into their spacesuits, while making sure everything is checked, tethered and ready for a safe and successful sortie.

- It is a role Luca will play in the two spacewalks before his, on 15 and 21 October.

ISSImagery2019_Auto4E

Figure 17: Astronauts assist spacewalkers in the Quest airlock. NASA astronauts Andrew Morgan (left) and Christina Koch (right) are suited up in U.S. spacesuits before beginning a seven hour and one minute spacewalk to upgrade the station's large nickel-hydrogen batteries with newer, more powerful lithium-ion batteries. In the center, NASA Flight Engineer Jessica Meir and Commander Luca Parmitano of ESA assist the spacewalking duo (image credit: NASA)

Out in space

- Before exiting the airlock, Thomas says, extreme focus is the overriding feeling.

- "Everybody's watching, so many people have been involved in the preparation, and the risks are so much higher when you're outside the Space Station," he explains. "The only thing you can't really prepare for are the day/night cycles.

- "During the night, you only have your helmet light, so you can't really see anything except what you're working on. And because you're working in all body orientations, it's easy to get disoriented. But you know you can always follow your tether back towards the hatch."

- After exiting the airlock, Thomas says one astronaut will prepare the worksite while the other breaks torque on the pre-positioned adapter plates. Each astronaut will then work to install the adapter plates, needed to replace two older batteries with one new one.

- The spacewalk on 25 October is the one of five scheduled for October. Even more are expected in November as Luca ventures out again with the complex task of repairing and enhancing dark matter hunter AMS-02 – a structure never designed to be maintained in orbit.

ISSImagery2019_Auto4D

Figure 18: The EMU (Extravehicular Mobility Unit) spacesuit. Learn about the components of the EMU spacesuit (image credit: ESA)

• October 9, 2019: For an astronaut looking out of the International Space Station windows, city lights are brighter than the stars. To tackle light pollution citizen scientists are urged to help map out the problem on their smartphones by identifying images of cities taken from space. 15)

- Astronaut pictures are the highest-resolution, color images of night available from orbit. "The International Space Station is the best observation point humankind has for monitoring Earth at night," says Kevin Gaston, project leader of the Lost at Night project that raises awareness of light pollution.

- There are half a million high-resolution pictures of Earth at night in NASA's Astronaut Photography of Earth archives. Most images in the archive are uncatalogued and do not have a location assigned to them.

- Lost at Night uses the power of citizen science to match images and identify the location of the astronauts' photographs online.

- This helps the study of light pollution and how it affects life on our planet.

- Artificial light has a broad range of impacts on the biological clock of both nocturnal and diurnal species. Light changes lead to knock-on effects that can impact whole ecosystems, from plant flowering times to migration disruptions for birds and turtles. Bright nights affect people's sleep and can negatively impact health.

- More astronaut pictures and more clues from Earth's inhabitants will help researchers better evaluate these effects over time and encourage actions to optimize street lighting.

The human gaze

- Human eyes can help shine a light on the huge catalog.

- "While computer algorithms have trouble distinguishing between stars, the Moon and cities, people are more reliable when it comes to recognizing patterns and analyzing complex images," says Alejandro Sánchez de Miguel, a research fellow at the UK's University of Exeter and lead investigator of the project.

- Over 30,000 images had their location pinpointed on by volunteers, but more help is wanted to complete the puzzle.

- "We don't know which direction the astronauts pointed the camera from the Station. We only know the time it was taken and the area of Earth they were flying over," explains Alejandro.

- The website invites you to identify cities lit up at night within a range of a 1000 km.

ISSImagery2019_Auto4C

Figure 19: The Iberian Peninsula at night, showing Spain and Portugal. Madrid is the bright spot just above the center (image credit: NASA)

- "Forget about playing Candy Crush in idle times. This is a great opportunity to learn about geography, the distribution of human activity and how your home town looks like from space," adds Alejandro.

- There are many scientific projects associated with images taken from the International Space Station.

- Astronauts take these pictures in their free time from the Space Station's Cupola, a seven-window observation module.

- "European astronauts are talented photographers, but it is not only about sharing beautiful pictures. Their contribution is key to scientifically demonstrate the true extent and impact of light pollution," points out Lucía García, project manager of the precursor Cities at Night project.

ISSImagery2019_Auto4B

Figure 20: SA astronaut Samantha Cristoforetti on the International Space Station 3 February 2015 during her Futura mission. Samantha is living and working on the Station as part of the Expedition 42 crew (image credit: ESA7NASA)

Bright intelligence

- Users are presented an image from an unknown city and they must try to find the best match by comparing it with several options.

- Because humans make mistakes too, this initiative needs inputs from five people per image to bring the margin of error down. From there, artificial intelligence takes over.

- The objective is to identify 90,000 images – enough to train artificial intelligence to automatically recognize a collection of pixels and locate images.

ISSImagery2019_Auto4A

Figure 21: Lost at Night interface. To tackle light pollution citizen scientists are urged to help map out the problem on their smartphones by identifying images of cities taken from space. Lost at Night uses the power of citizen science to match images and identify the location of the astronauts' photographs online. Users are presented an image from an unknown city and they must try to find the best match by comparing it with several options. This helps the study of light pollution and how it affects life on our planet (image credit: Lost at Night)

• October 8, 2019: This day (Tuesday) was packed with more spacewalk preparations along with ongoing microgravity research aboard the International Space Station. The six-member Expedition 61 crew also conducted emergency response training and cargo transfers from a Japanese cargo craft. 16)

- NASA astronauts Andrew Morgan and Christina Koch are going out on their second spacewalk together Friday at 7:50 a.m. EDT. The duo today reviewed spacewalk procedures and set up the tools they will use to continue upgrading the station's large nickel-hydrogen batteries with newer, more powerful lithium-ion batteries.

- Commander Luca Parmitano serviced U.S. spacesuit components and practiced Canadarm2 robotics maneuvers to support Friday's excursion. NASA TV coverage begins its live coverage of October's second spacewalk at 6:30 a.m.

- Morgan had a few moments set aside Tuesday to swap batteries inside Astrobee, the free-flying robotic assistant being tested aboard the orbiting lab. Afterward, he joined NASA Flight Engineer Jessica Meir inside Japan's HTV-8 resupply ship to continue unpacking crew supplies and station hardware.

- Koch switched to space gardening after spacewalk reviews and watered plants in the Columbus laboratory module. She and Meir finally wrapped up the workday with some light maintenance work in the station's environmental health system.

- All six crewmembers, including cosmonauts Alexander Skvortsov and Oleg Skripochka, reviewed emergency roles and responsibilities after lunch today. The crew familiarized itself with safety gear, communication protocols, escape paths and evacuation procedures.

ISSImagery2019_Auto49

Figure 22: Expedition 61 Commander Luca Parmitano of ESA (European Space Agency) assists NASA astronauts Andrew Morgan (left) and Christina Koch (right) in their U.S. spacesuits (image credit: NASA)

• October 6, 2019: Lightning struck the Kaibab Plateau in Arizona along the northern rim of the Grand Canyon on July 12, 2019, starting a wildfire (the Castle Fire) that would eventually burn more than 19,000 acres. As it was still burning almost a month later, an astronaut onboard the International Space Station shot this photograph of smoke-filled canyons in the region. 17)

- During morning and evening hours, dense smoke often settles in low-lying areas and becomes trapped due to temperature inversions—when a layer within the lower atmosphere acts as a lid and prevents vertical mixing of the air. Steep canyon walls act as a horizontal blockade, concentrating the smoke within the deepest parts of the canyon and increasing the strength of the inversion. As the day progresses and temperatures rise, the air will usually begin to mix and the smoke will no longer be confined to the canyon.

- As this image shows, without vertical mixing, the smoke from Lookout Canyon travels throughout the extensive system of side canyons, spreading the smoke to different areas near the ground, rather than dispersing upward.

ISSImagery2019_Auto48

Figure 23: This astronaut photograph ISS060-E-38049 was acquired on August 20, 2019, with a Nikon D5 digital camera using an 800 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 60 crew (image credit: NASA Earth Observatory, caption by Sara Schmidt)

• October 3, 2019: NASA astronaut Nick Hague returned to Earth from the International Space Station on Thursday, alongside Soyuz commander Alexey Ovchinin of the Russian space agency Roscosmos and visiting astronaut Hazzaa Ali Almansoori from the United Arab Emirates (UAE). The crew landed safely at 6:59 a.m. EDT in Kazakhstan. 18)

- Hague and Ovchinin launched March 14, along with fellow NASA astronaut Christina Koch. Six hours later, they began their 203-day mission on the station, orbiting Earth 3,248 times and traveling 86.1 million miles.

- Koch remains aboard the orbiting laboratory for an extended mission that will provide researchers the opportunity to observe effects of long-duration spaceflight on a woman, in preparation for human missions to the Moon and Mars. She is expected to return to Earth in February 2020, almost a year after her launch.

ISSImagery2019_Auto47

Figure 24: NASA astronaut Nick Hague, Russian cosmonaut Alexey Ovchinin and visiting astronaut from United Arab Emirates (UAE) Hazzaa Ali Almansoori returned to Earth from the International Space Station at 6:59 am in Kazakhstan (image credit: NASA)

- For Almansoori, this landing completed an eight-day stay on the station that covered 128 orbits of Earth and a journey of 3.1 million miles since launching Sept. 25 with NASA astronaut Jessica Meir and Oleg Skripochka of Roscosmos. Almansoori made history as he became the first person from the UAE to fly in space.

- After postlanding medical checks, Hague will return to Houston, and Ovchinin and Almansoori will return to Star City, Russia.

- The Expedition 60 crew contributed to hundreds of experiments in biology, biotechnology, physical science and Earth science, including investigations into devices that mimic the structure and function of human organs, free-flying robots, and an instrument to measure Earth's distribution of carbon dioxide.

- Hague conducted three spacewalks during his mission, totaling 19 hours and 56 minutes. Ovchinin conducted one spacewalk lasting 6 hours and 1 minute.

- Hague's first two spacewalks in March continued the overall upgrade of the station's power system with newer, more powerful lithium-ion batteries on one pair of the station's solar arrays. During his third spacewalk, he and NASA astronaut Andrew Morgan successfully installed the second of two international docking adapters that Boeing CST-100 Starliner and SpaceX Crew Dragon commercial crew spacecraft will use to connect to the space station.

- Hague completes his second flight in space totaling 203 days, while Ovchinin has now spent 375 days during three flights. Hague and Ovchinin flew together on an abbreviated mission in October 2018, cut short by a technical problem that triggered an ascent abort minutes after launch and a safe landing back on Earth.

- When the Soyuz MS-12 spacecraft with Hague, Ovchinin and Almansoori undocked at 3:37 a.m. Oct. 3, Expedition 61 officially began aboard the station, with NASA astronauts Koch, Meir and Morgan, cosmonauts Alexander Skvortsov and Oleg Skripochka of Roscosmos as flight engineers, and ESA (European Space Agency) astronaut Luca Parmitano as the station's commander.

• October 1, 2019: When Earth is so far away, it helps to have friends nearby. The usual six-astronaut crew of the International Space Station welcomed three more and a cargo vehicle last week, making for a full house on the orbital outpost. 19)

ISSImagery2019_Auto46

Figure 25: The arrival of NASA astronaut Jessica Meir, Russian cosmonaut Oleg Skripochka and the first United Arab Emirates (UAE) astronaut Hazza Al Mansouri on Friday (27 September) was followed by the Japanese HTV-8 space freighter the next day, bringing over four tons of supplies and fresh science (image credit: ESA).

- With nine people now on board, the Space Station is even busier and nosier than usual, including at mealtimes. ESA astronaut Luca Parmitano tweeted this image of the team gathered for a celebratory dinner in the Russian Zvezda module, the food preparation area of the Space Station. He captioned it: "Celebrating three birthdays in one week (me, and Nick Hague and Alexei Ovchinin), wearing the t-shirts of our ‘space band': ‘Kryk Chayky'- ‘The cry of the seagull.'"

- The seagulls, like shared mealtimes, are one way the crew cope with the oddities of life in space. From isolation and disturbed day-night rhythms to the hums and buzzes of the Space Station, living in space can be stressful. Astronauts try to maintain a routine that includes social time to unwind and build camaraderie.

- This is especially important in a multicultural environment. A total of 239 people from 19 countries have visited the space home, and as of Luca's current mission Beyond, there are 4 nationalities on board.

- Luca is preparing to take over command of the Space Station, when current commander cosmonaut Alexei Ovchinin, NASA astronaut Nick Hague and UAE astronaut Hazza Al Mansouri return to Earth in the early hours of 3 October.

- In the meantime, it is not all fun and band practice for the crew. They are hard at work on science experiments and, perhaps more importantly this week, station maintenance. Read more about the experiments and chores in the biweekly roundup.

• September 30, 2019: Three newcomers and two spacecraft make a full house in space. The population of the International Space Station rose to nine last week while European science focused on bone loss, time perception and routine maintenance. 20)

- ESA astronaut Luca Parmitano welcomed aboard NASA astronaut Jessica Meir, Russian cosmonaut Oleg Skripochka and the first United Arab Emirates (UAE) astronaut Hazza Al Mansouri. Following their arrival on the Soyuz spacecraft, Japan's HTV-8 space freighter docked to the Station with over four tonnes of supplies and new science experiments.

- A total of 239 people from 19 countries have visited the space home, where living quarters are now even noisier than usual as humming fans and the creaking of the Station's shell join with the sounds of nine busy astronauts on board.

Bone loss

- All astronauts lose up to 1% of their bone mass each month in space, a similar rate of decrease to that experienced by people with osteoporosis on Earth. This disease results in loss of calcium and a more brittle bone structure.

- Studying what happens during long spaceflights offers a good insight into the process of osteoporosis and helps develop methods to combat it. The Early Detection of Osteoporosis in Space experiment looks at changes in bone structure before and after flight.

- Cosmonaut Aleksander Skvortsov is 53 years old and this is his third long stay on the Space Station. Halfway through his mission, he took blood samples for scientists to study how his skeleton is coping when its supporting function is cancelled out by microgravity.

ISSImagery2019_Auto45

Figure 26: NutrISS experiment. Getting meals right is an aspect of mission design, so the Nutrition Monitoring for the International Space Station (NutrISS) experiment is tracking Luca's energy balance. - Using the EveryWear astronaut app and a ‘bioelectric impedance' device to measure his bodily conductivity, Luca has been tracking his fat to mass ratio. The science teams on Earth hope that a carefully-tailored high-protein diet could limit the typical microgravity-driven loss of bone and muscle. EveryWear is an iPad-based application that collects physiology and medical data from astronauts on the International Space Station. It is connected to wearable biomedical sensors that record exercise, heart rate and sleep quality. Its main use is as a food diary. The astronaut simply scans the barcode of the food with the built-in tablet camera, classify it as breakfast, lunch dinner or snack, and add how water was consumed (image credit: ESA/NASA)

- Researchers behind the Nutrition Monitoring for the International Space Station (NutrISS) experiment believe that a carefully-tailored high-protein diet could limit microgravity-induced bone and muscle loss in astronauts.

- For the third time during his mission Beyond, Luca tracked his fat to mass ratio with a bio-impedance device and logged the meals consumed during the week using the EveryWear astronaut app. Expert nutritionists use the data to monitor and provide advice to keep him healthy.

• September 30, 2019: Scientific studies recently conducted aboard the International Space Station included testing algorithms to control free-flying satellites, evaluating the flow of amyloids in microgravity and more. On Sept. 25, the Expedition 60 crew welcomed members of Expedition 61 including NASA astronaut Jessica Meir and Russian cosmonaut Oleg Skripochka, along with a ROSCOSMOS spaceflight participant from the United Arab Emirates, Hazzaa Ali Almansoori. In addition, the Japan Aerospace Exploration Agency (JAXA) H-IIB rocket launched Sept. 24 for a four-day trip to bring supplies and science investigations to the station. 21)

- The space station provides a platform for long-duration research on the human body in microgravity and for testing technologies for traveling farther into deep space, which supports Artemis, NASA's plans to go forward to the Moon and on to Mars.

ISSImagery2019_Auto44

Figure 27: NASA astronaut Nick Hague works on the Ring Sheared Drop investigation in the Microgravity Sciences Glovebox as NASA astronaut Christina Koch observes. Ring Sheared Drop examines the formation and flow of amyloids in microgravity (image credit: NASA)

Figure 28: Space to Ground: New Arrivals: 09/27/2019 (video credit: NASA Johnson)

• September 29, 2019: This photograph (Figure 29), taken by an astronaut on the International Space Station, offers a detailed view of parallel, linear dunes in Australia's Simpson Desert. The dunes have formed as a result of wind erosion and sand deposition taking place over thousands of years. Some of the dunes stretch more than 100 km in length. 22)

- Lake Eyre—also known as Kati Thanda–Lake Eyre—is Australia's largest salt lake. Some of it is visible in the right corner of the image, along with other playa lakes that stand out from the rippled landscape. Playas are flat, shallow lake beds that occur in arid and semi-arid climate zones. The dry lake beds are lighter in color due to a thin layer of salt deposits that reflect more light.

- The Kati Thanda-Lake Eyre basin spans parts of South Australia, Northern Territory, Queensland, and New South Wales. It is part of one of the world's largest internally draining river systems, which means that the rivers in the photo do not drain into the ocean. In this photo, Lake Eyre has a higher volume of water than usual due to flooding that occurred earlier in the year.

ISSImagery2019_Auto43

Figure 29: The astronaut photograph ISS059-E-67912 was acquired on 19 May 2019, with a Nikon D5 digital camera using a 210 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, caption by Laura Phoebus)

• September 27, 2019: Luca was launched to the International Space Station for his second mission, Beyond, on 20 July 2019. He will spend six months living and working on the orbital outpost where he will support more than 50 European experiments and more than 200 international experiments in space. 23)

ISSImagery2019_Auto42

Figure 30: ESA astronaut Luca Parmitano and the rest of the International Space Station crew celebrated European Day of Languages (26 September) with the following message: "Six friends, three different languages: and all speak at least two of those. Today, we celebrate the ability to speak other languages and the European linguistic diversity, a rich heritage of our history." (image credit: ESA/NASA)

• September 25, 2019: ESA astronaut Luca Parmitano is set to become the third European and first Italian commander of the International Space Station, following an official change of command ceremony on Wednesday 2 October 2019. 24)

- He will take over from departing Russian cosmonaut Alexei Ovchinin. This marks the start of Expedition 61 and the second part of Luca's second space mission known as Beyond.

- Live coverage of the change of command ceremony is scheduled for 15:20-15:40 CEST (13:20-13:40 GMT) 2 October and will be shown on NASA TV.

Europe in command

- The full title of Luca's new role is International Space Station crew commander. While overall command of the Station lies with ground-based flight directors unless there is an emergency on board, the role of crew commander is vital to mission success.

- ESA astronaut and current head of ESA's Astronaut Center (EAC) in Cologne, Germany, Frank De Winne was the first European appointed to the commanding role. This was during his OasISS mission in 2009. He was followed by ESA astronaut Alexander Gerst in 2018, who held the role during the second part of his Horizons mission.

- Frank says the International Space Station crew commander holds responsibility for crew morale and wellbeing. It is up to them to ensure crew members are able to perform the tasks required of them during their time in space.

- He is confident Luca will do an excellent job and believes the appointment of two European commanders in quick succession says a lot about Europe's position as a trusted partner.

- "People can rely on us, and they do rely on us," Frank explains. "Not only in terms of the hardware that we provide to the Space Station and now the service module for Orion, but also in the area of crew operations.

- "I think that is a very good result of the investment European member states have made."

- Luca has also expressed his pride in the appointment, saying "I am honored that the Space Station program chose me for this role, and at the same time I am humbled by the task.

- "Being the commander of the most trained and proficient people on and off Earth can be daunting. I see myself as a facilitator, my goal will be to put everybody in the condition to perform to the best of their capability. Ultimately, though, I am responsible for the safety of the crew and the Station, and for overall mission success."

ISSImagery2019_Auto41

Figure 31: Official portrait of ESA astronaut Luca Parmitano for his second mission to the International Space Station, called Beyond (image credit: ESA–A. Conigli)

- Luca takes over command at a particularly busy time for Station operations.

- A number of spacewalks are scheduled for November to extend the life of the Alpha Magnetic Spectrometer (AMS-02) – a state-of-the-art cosmic-ray detector designed to examine fundamental properties of dark matter, antimatter and missing matter and the origin of the Universe.

- Later in November, Luca is also expected to remotely control a robot on Earth to collect geological samples under the direction of scientists as part of an experiment called Analog-1.

- Luca is currently scheduled to remain on Station as Space Station commander until February 2020 when he will return to Earth with Alexander and Christina.

• September 25, 2019: An astronaut took this photograph on a clear spring 2019 day while looking north toward mainland Alaska. At the time, the International Space Station (ISS) was located approximately 430 kilometers (270 miles) southeast of the Alaska Peninsula. 25)

- Clear views of Alaska from the ISS are uncommon due to frequent cloud cover and the limits of the ISS orbit trajectory. The spacecraft flies between 51.6° North and South, so regions near the Arctic Circle (66.5°N), are difficult to photograph and often beyond an astronaut's field of view.

- This oblique photograph offers a wide view toward the Seward Peninsula. The Bering Strait is visible with the easternmost reaches of Russia on the other side of the narrow waterway. Pack ice is floating through the strait toward the Bering Sea. The snow cover in this spring season photo highlights braided rivers, lakes, and the Ahklun Mountains.

- Astronauts on some space shuttle missions had more direct views of Alaska for photography, such as this photo from mission STS042 of 1992 that offers a different perspective on the Ahklun Mountains.

ISSImagery2019_Auto40

Figure 32: The astronaut photograph ISS059-E-36413 was acquired on April 27, 2019, with a Nikon D5 digital camera using a 95 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, caption by Andrea Meado)

• September 16, 2019: There is plenty of science on the boil at the International Space Station – including an experiment literally designed to expand our knowledge of the boiling process. 26)

ISSImagery2019_Auto3F

Figure 33: ESA astronaut Luca Parmitano shares a light dinner with his Expedition 60 crewmates on the International Space Station. Luca posted this image to social media during his Beyond mission with the caption: Among friends for a light dinner ... so light that everything flies (image credit: ESA7NASA)

Figure 34: ESA astronaut Luca Parmitano is this year's ambassador of the European Astro Pi Challenge. In this video, he welcomes students to the challenge and gives an overview of the project (video credit: ESA)

- The European Astro Pi Challenge is a school project run by ESA in collaboration with the Raspberry Pi Foundation. It gives young people the opportunity to write code that runs on mini-computers on board the International Space Station. This year, Luca is the European Astro Pi challenge ambassador and on 12 September he launched the challenge with a video outlining the details and calling for submissions.

• September 15, 2019: This circular cloud formation caught the eye of an astronaut while orbiting over the South Pacific Ocean. Traveling near the southernmost reaches of its orbit, the International Space Station (ISS) was more than 3,200 km east of New Zealand and more than 4,400 km west of South America. 27)

- The striking colors within the cloud formation are a result of the local sunrise. When the Sun is at a low angle (relative to the atmosphere and ISS), sunlight passes through a thicker slice of the atmosphere. This can enhance the red end of the visible color spectrum, leading to the pink hues visible at the center of the image.

- When photos are taken close to the day-night line (also known as the terminator), the sunlight can cast shadows that accentuate contrasting cloud heights and make the sense of circular motion more distinct to the eye. This photo was taken while the astronaut was looking back toward the night hemisphere, so the clouds become less defined as they fade into the terminator.

- The astronaut who took this photograph sent a message from the ISS to ask if this specific cloud formation had been a named tropical cyclone. However, the weather system was short-lived.

ISSImagery2019_Auto3E

Figure 35: Low Sun angles enhance certain wavelengths of light, painting the atmosphere over a distant patch of ocean. This astronaut photograph ISS059-E-11742 was acquired on April 4, 2019, with a Nikon D5 digital camera using a 50 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, Caption by Sara Schmidt)

• September 11, 2019: This photograph, taken by an astronaut onboard the International Space Station, captures a short section of coastline on the west coast of Baja California, Mexico. Small developed areas are interspersed among sections of farmland in a valley bounded by minor mountain ranges. The city of Ensenada, a major port and tourist destination, lies just beyond the bottom left corner of the image. 28)

- The fishing industry is an integral part of the economy for this region. Pacific Bluefin tuna is one of the important species locally. A series of fish farming pens also appear along the east side of the peninsula. (The inset image offers a zoomed look at one of the aquaculture facilities.)

- Punta Banda Peninsula reaches out to form the southern limit of Todos Santos Bay (All Saints Bay). The temperate conditions that make this region productive for fishing also provide attractive conditions for Pacific gray whales as they migrate south from their feeding grounds to give birth in the protected bays and estuaries of Baja California.

- The lagoon (image center) and the bay coastline have been affected by erosion in recent years due to a combination of natural processes, a reduced sediment supply to the bay and, increasingly, urban growth and increased tourism.

ISSImagery2019_Auto3D

Figure 36: The astronaut photograph ISS059-E-36214 was acquired on April 27, 2019, with a Nikon D5 digital camera using an 800 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, caption by Laura Phoebus)

• September 4, 2019: Visit Seattle and you might hear a local declare "the mountain is out!" The phrase refers to Mount Rainier, situated 60 miles (95 km) south-southeast of the city. On a clear day, the majestic volcano dominates the horizon. It is an iconic backdrop of the Puget Sound region. 29)

- But the Pacific Northwest is also known for its cloudy days and rain. That's why people in the region notice when the "mountain is out." An astronaut noticed, too, snapping this photograph from aboard the International Space Station (ISS) on a clear day in July 2018.

- Mount Rainier is the tallest mountain in the Cascade Range, standing 14,410 feet (4,392 m) above sea level. Viewed from the side, its highest point might appear to be Point Success, Liberty Gap, or the crater rim. The nadir view, however, gives a clear view of Columbia Crest—a small mound of snow north of the crater rim, and the mountain's true highest point.

- The nadir perspective also provides a clear view of the volcano's crater. Black rocks ring the snow- and ice-filled crater, which measures more than 300 m across. This clearly defined crater is ringed by a second, less distinct crater.

- With 25 named glaciers flowing down its flanks and patches of perennial snow, the mountain stays white year-round. In some areas, ice is forced around huge, long walls of rock known as "cleavers"; one of the most prominent is Gibraltar Rock. Scientists have documented the gradual loss of the mountain's perennial ice, which lost almost 2 percent of its area between 2009 and 2015.

- Not all changes are gradual. Just two days before this photograph was acquired, an icefall on Ingraham Glacier sent blocks of ice and rubble careening down 300 meters along a popular climbing route. The event, large enough to be detected on seismographs, occurred at night and no climbers were injured.

- The modern mountain is the result of about half a million years of growth amid periods of volcanic activity. Cascade Range volcanoes, including Mount Rainier, are the result of oceanic crust sinking below North America, causing the release of water and melted rock. During the past 2600 years the mountain has erupted about a dozen times, the largest of which occurred about 2200 years ago. Small summit explosions were last reported in 1894, but have not been confirmed.

ISSImagery2019_Auto3C

Figure 37: The astronaut photograph ISS056-E-85160 was acquired on July 8, 2018, with a Nikon D5 digital camera using an 160 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 56 crew (image credit: NASA Earth Observatory, story by Kathryn Hansen)

• September 2, 2019: Hurricane Dorian Seen From Aboard the Space Station. 30)

ISSImagery2019_Auto3B

Figure 38: NASA astronaut Christian Koch snapped this image of Hurricane Dorian as the International Space Station during a flyover on Monday, September 2, 2019 (image credit: NASA)

• September 1, 2019: An astronaut aboard the International Space Station (ISS) focused a long lens on the Zambezi River where it flows over Africa's dramatic Victoria Falls. The falls were given their modern name in 1855 by the European explorer David Livingstone, who named them after Queen Victoria. Long before colonial times, however, the falls were called Mosi-oa-Thunya—Tswana for "The Smoke that Thunders." 31)

- In this oblique, south-looking photograph, the falls appear as a thin white line near the image center. The river valley changes dramatically at the falls. The partial reflection of the Sun off the water (sunglint) shows that the river above the falls (right half of the image) is a sheet of water up to 2 kilometers (1.25 miles) wide. In the left half of the image, the river appears as a narrow line. This is where the river flows in a zigzagging canyon that it has cut more than 100 meters down into the rock. The canyon walls cast dark shadows that makes the canyon look more prominent from space compared to the wide, placid waters above the falls.

- Although not the highest or longest falls in the world, Victoria Falls is the world's largest sheet of falling water. Several prior positions of the falls also appear in this space view. A photo shot during the space shuttle years shows the line of spray produced by the falls.

- The Zambezi River forms the international boundary between Zambia and Zimbabwe. The tourist towns of Livingstone and Victoria Falls stand out due to their urban grid structures and road networks.

ISSImagery2019_Auto3A

Figure 39: The astronaut photograph ISS056-E-100602 was acquired on July 30, 2018, with a Nikon D5 digital camera using an 800 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 56 crew (image credit: NASA Earth Observatory, caption by M. Justin Wilkinson)

• August 27, 2019: An astronaut onboard the International Space Station took this photo of sunglint reflecting off Turkmenbashi Gulf, an inlet on the southeastern edge of the Caspian Sea. The complex glint patterns are due to waves, winds, the presence of oils or surfactants, and the presence of boats and drilling platforms—all of which alter the roughness of the water surface. 32)

- Just beyond the narrow passage into Turkmenbashi Gulf, dozens of offshore drilling operations dot the sea surface. The Caspian Sea is a large oil-producing region, and these drilling platforms are located over a natural gas field. Though these platforms are barely visible from space, the passing waves and sunglint create a traceable line, making the structures easier to locate from above. Wakes from boats also create linear streaks as they head to and from towns and petroleum storage.

- A bright, hook-shaped streak appears in the sunglint near the drilling platforms. This could possibly be an oil slick or bilge water discharge from a ship. The streak has been reworked by waves, so the source cannot be determined from this photo.

ISSImagery2019_Auto39

Figure 40: The astronaut photograph ISS059-E-99045 was acquired on June 10, 2019, with a Nikon D5 digital camera using a 140 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, caption by Andrea Meado)

• August 27, 2019: As relief agencies turn to satellite data to help assess the scale, astronauts too are helping to provide context from the International Space Station. 33)

- The Amazon basin is home to millions of plants and animals and many indigenous people. It also produces around 20% of Earth's oxygen, for which it is sometimes referred to as ‘the lungs of the world'. The Amazon rainforest covers large parts of Brazil, as well as parts of Peru, Bolivia, Paraguay and Argentina, all of which have been affected.

- While fires rage in the rainforest, strong winds have carried smoke plumes thousands of kilometers across land and sea, causing a black out in São Paulo, Brazil, some 2500 km away. Data from CAMS (Copernicus Atmosphere Monitoring System) shows that smoke has even travelled as far as the Atlantic coast.

- Fires are common during the dry season, which runs from July to October. But this year is unlike any other.

- Copernicus Sentinel-3 data has helped to detect almost 4000 fires in August 2019 alone, compared to only 1110 fires in the same period last year.

- This year's unprecedented blazes are four times the normal amount and are likely due to legal and illegal deforestation for agricultural purposes.

- Rising global temperatures are also thought to make the region more susceptible to fire.

- he fires have sparked an international crisis, with many grappling with what a burning Amazon means for local plant, animal, and indigenous populations, not to mention our planet's future.

ISSImagery2019_Auto38

Figure 41: The Amazon rainforest is burning. ESA astronaut Luca Parmitano took this image, among a series, from his vantage point 400 km above Earth on 24 August 2019. He tweeted the images, captioning them: "The smoke, visible for thousands of kilometers, of tens of human-caused fires in the Amazon forest."(image credit: ESA/NASA–L. Parmitano)

• August 21, 2019: NASA astronauts Nick Hague and Andrew Morgan concluded today's spacewalk at 2:59 p.m. EDT. During the six-hour and 32-minute spacewalk, the two astronauts successfully installed the second of two IDAs (International Docking Adapters). 34)

- The IDAs will be used for the future arrivals of Boeing CST-100 Starliner and SpaceX Crew Dragon commercial crew spacecraft. NASA's commercial crew partnership with Boeing and SpaceX will restore launches of American astronauts from American soil on American rockets and maximize the time U.S. crews can dedicate to scientific research and technological advances aboard the orbiting laboratory to enable the agency's ambitious goals for the Artemis lunar exploration program and future missions to the Moon and Mars. Regular human space transportation to the space station is a critical step to opening the space station for commercial business to enable the growth of the U.S. commercial space sector and the development of a robust low-Earth orbit economy.

- The spacewalkers also completed additional routing for the station's wireless internet.

- The US Segment of the ISS has two docking ports, called PMAs (Pressurized Mating Adapters), which are tunnels that convert US Segment CBM (Common Berthing Mechanism) berthing ports into APAS (Androgynous Peripheral Attachment System) docking ports. 35)

- APAS was the docking system used by the now-retired Space Shuttles and is a Russian-designed system that NASA decided to adopt for ease of compatibility between the Shuttle and the Russian Mir space station, and joint Russia-NASA ISS.

- APAS consists of a capture ring which extends from the arriving vehicle, which impacts an APAS port on the ISS to provide initial capture of the two vehicles. The capture ring then retracts to pull the two docking collars together, whereupon the "hard mate" docking process is completed.

- However, APAS has a design disadvantage in that the system requires a large impact force to be applied in order for the capture ring on the arriving vehicle to latch onto the APAS port on the ISS.

- As such, a Boeing-designed system known as the Soft Impact Mating Attenuation Concept (SIMAC) is part of the IDAs. The plan was always to attach two IDAs on the ISS, one for each of the station's PMAs. They are ring-like structures with an APAS port on one end to connect to the PMAs, and a SIMAC port on the other end to connect to future crew vehicles.

- Effectively, the installation of the IDAs converts Pressurized Mating Adapter-2 and 3 (PMA-2 and PMA-3) docking ports into the newer International Docking System Standard (IDSS) style.

ISSImagery2019_Auto37

Figure 42: Spacewalkers Nick Hague (top) and Andrew Morgan install the International Docking Adapter (IDA-3) to the Pressurized Mating Adapter on top of the station's Harmony module (image credit: NASA TV)

- IDA-2 is currently the only IDA attached to the ISS. IDA-2 was originally planned to take up IDA-3's planned position on PMA-3. IDA-1 was destroyed by the anomaly that caused the launch failure of SpaceX's seventh CRS resupply mission on 28 June 2015.

- IDA-2 then launched as planned on SpaceX CRS-9 on 18 July 2016, although instead of being placed on PMA-3 like originally planned, it was installed onto PMA-2 where IDA-1 was originally planned to be installed.

- This was the docking port for the first Dragon 2 to launch to the ISS, during Dragon 2's DM-1 mission. However, NASA requires two IDAs, allowing a port of call for both Dragon 2 and Boeing's Starliner.

- The latter is expected to conduct its first mission to the ISS in around October, an uncrewed mission called OFT-1 (Orbital Flight Test -1). This will be followed by the Crew Flight Test -1 (CFT-1) mission with a crew. SpaceX is also aiming to launch its first crewed mission on the DM-2 flight, potentially by the end of the year.

- Meanwhile, the Cargo version of the Dream Chaser spacecraft won't be using an IDA port. Although it is capable of docking, the decision was made to use the berthing approach for its upcoming cargo runs.

- IDA-3 started construction soon after the destruction of CRS-7 to replace the destroyed IDA-1 and was built mostly out of spare parts left over from the construction of IDA-1 and 2 to lower construction time as much as possible.IDA-3 has a mass of 534 kg before launch. The docking adapter is ~1.1 m tall and 1.6 m wide.

- Following its safe arrival at the ISS, IDA-3 was pre-positioned just in front of its installation site on the forward side of PMA-3 by the ground controllers using the Dextre robot ahead of the EVA. Dextre extracted from the trunk of the CRS-18 Dragon spacecraft on which it was launched last month.

- The robotic team positioned IDA-3 over PMA-3's APAS docking collar, with alignment guides on both the PMA and IDA aiding the process.

• August 20, 2019: An astronaut onboard the ISS shot this photograph of the southwestern coast of South Africa. The Cape of Good Hope is located at the southern tip of the Cape Peninsula, which is also home to Cape Town, the legislative capital of South Africa. 36)

ISSImagery2019_Auto36

Figure 43: The astronaut photograph ISS059-E-78303 was acquired on May 28, 2019, with a Nikon D5 digital camera using a 340 millimeter lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, caption by Sarah Deitrick)

- The Cape was originally named the Cape of Storms in the 1480s by the Portuguese explorer Bartolomeu Dias. It was later renamed to Good Hope to attract more people to the Cape Sea Route that passed the southern coast of Africa. The Cape eventually became a significant port and waypoint point for sailors traveling from Europe to Asia. However, the opening of the Suez Canal in 1869 provided a much shorter route from the Mediterranean Sea to the Indian Ocean, making the long trip around Africa inefficient.

- The waters near the Cape, where the Atlantic and Indian Oceans meet, can be treacherous for ships. The warm Agulhas current from the east runs into the cold Benguela current from the northwest. Dangerous waves from these currents have caused many shipwrecks. According to folklore, these shipwrecks led to the legend of the Flying Dutchman, a ghost ship doomed to sail the oceans forever after being lost in a severe storm near the Cape.

- Offshore, the transverse and longitudinal wind patterns on False Bay are caused by the strong winds blowing along the South African coast. The winds will blow in different directions depending on the time of year: During the summer (September to March), the winds will blow in from the southeast; in winter (May to September) they blow from the northwest. The winter winds tend to bring in moisture, cold fronts, and stormy weather from the Atlantic. Summer winds are known to locals as the "Cape Doctor" because they often blow pollution away from the region and help mix oxygen up into the shallow waters of the bay, sustaining small fish and crabs.

• August 20, 2019: ESA astronaut Luca Parmitano slides the smallest miners in the universe into the Kubik experiment container on the International Space Station. 37)

- For the next three weeks, three different species of bacteria will unleash themselves on basalt slides in the Kubik centrifuge that simulates Earth and martian gravity as well as in microgravity.

- Run by a research team from the University of Edinburgh in the UK, the BioRock experiment is testing how altered states of gravity affect biofilm formation – or the growth of microbes on rocks.

- Microbes are able to weather down a rock from which they can extract ions. This natural process enables biomining, where useful metals are extracted from rock ores.

- Already a common practice on Earth, biomining will eventually take place on the Moon, Mars and asteroids as we expand our understanding and exploration of the Solar System.

- The bacteria arrived at the Space Station on the latest Dragon resupply mission in a dehydrated, dormant state.

- The organisms are given ‘food' to restore cell growth and left to grow on basalt at 20°C.

- After three weeks, the samples will be preserved and stored at 4°C while they await their return to Earth.

- Researchers will map out how altered states of gravity affect the rock and microbes as a whole, as well as which microbe is the best candidate for mining in space. It is hoped these results will shine light on extraterrestrial biomining technologies and life-support systems involving microbes for longer duration spaceflight.

- Biomining in space can also increase the efficiency of the process on Earth and could even reduce our reliance on precious Earth resources.

- In addition to installing the little creatures, Luca is busy with a host of other experiments during his six-month mission, called Beyond.

ISSImagery2019_Auto35

Figure 44: Luca installs the BioRock (image credit: ESA)

• August 19, 2019: NASA recently doubled the rate at which data from the ISS (International Space Station) returns to Earth, paving the way for similar future upgrades on Gateway, NASA's upcoming outpost in lunar orbit, and other exploration missions. This new data rate will enable the space station to send back more science data faster than ever before. 38)

- NASA's missions, both near and far, rely on quick and effective communications to relay critical mission data to control centers and scientists here on Earth. The station now supports a 600 Mbit/s connection, doubling the amount of data that the station can transmit and receive at a time.

- "NASA's communications networks play a pivotal role in every NASA mission, enabling data from human spaceflight, space and Earth science research missions and technological demonstrations to reach Earth for the benefit of humanity," said George Morrow, the acting center director of NASA's Goddard Space Flight Center in Greenbelt, Maryland. "This increase in data rate capability for the ISS underlines our commitment to provide high-quality operational services for NASA exploration missions today and in the future."

- The space station's unique environment allows astronauts to conduct research that would not otherwise be possible on Earth. These experiments and technology demonstrations are increasingly reliant on high data rates between the station and researchers on Earth. The work on the orbiting laboratory provides knowledge in human research, experience in long-duration spaceflight, and capabilities for technology demonstrations that may enable future missions. With the data rate increase, the station can now accommodate new experiments and technology demonstrations that require higher resolution or more detailed data than was previously possible.

- The space station communicates with Earth through radio frequency signals using the TDRS (Tracking and Data Relay Satellites) system and ground-based antennas called the Space Network. The TDRS are placed in GEO, over various strategic locations so that they can relay data to the ground from LEO satellites. Landlines then send the signal to various NASA centers, and their computer systems turn the radio signal back into readable data. To send data back, the process repeats in the other direction. This happens with less than a one-second delay in communication.

- "This project demonstrated that advanced radio frequency waveforms can be used efficiently to increase data rates and improve performance for high-rate communication services," said Risha George, the upgrade project lead for the Space Network. "Operational use of these advanced waveforms proves that they can also be used for future missions, such as on the Gateway, a small spaceship that will orbit the Moon and provide a stepping stone to human exploration on Mars."

- Several components in this global communications system were upgraded to support the increased data rate, including a new digital ground architecture for the Space Network. Technicians updated the space station's software-based modem, improved data processors at various NASA centers, and enhanced routers, interfaces and other equipment and software at the ground stations. The circuits and bandwidth of the terrestrial data lines between the various Earth-based components were also upgraded. The team then performed extensive testing to ensure the upgrades worked correctly. All of this was done while still providing real-time support to the more than 40 missions the network regularly supports.

- "Partnerships like this are crucial to our continued success as an agency," said Penny Roberts, the upgrade project lead for the space station. "Our continued partnership will transition us to 600 Mbit/s, and who knows where else we will go together."

• August 14, 2019: ESA astronaut Luca Parmitano made space (and music) history on 13 August when he broadcast the first DJ music set from orbit, performing to an audience of over 3000 people as part of the BigCityBeats WORLD CLUB DOME Cruise Edition. 39)

- Making time for this broadcast during his non-operational activities, Luca also explained the goal of his Beyond mission and demonstrated life on board the Station to the audience in Ibiza. All these activities were key to widening awareness of ESA to a young European audience and bringing the focus on space in an inspirational and accessible setting.

- Luca's set was followed by that of his mentor, German DJ Le Shuuk. Luca had taken time out of his busy pre-flight training schedule earlier this year to work with Le Shuuk and receive a briefing on how to mix tracks. Le Shuuk prepared a personal playlist for Luca to take with him to the Station, and provided specialist DJ software that was uploaded to the astronaut's tablets in space.

- The ‘first DJ in space' story can trace its origins back to 2018, when Frankfurt-based events company, BigCityBeats, contacted ESA's newly formed Partnerships Unit. They requested the assistance of an ESA astronaut for a ‘zero g' parabolic flight that they had chartered from French company Novespace (which also operates the joint ESA/CNES/DLR parabolic flights).

ISSImagery2019_Auto34

Figure 45: ESA astronaut Luca Parmitano made space (and music) history on 13 August 2019 when he broadcast the first DJ music set from orbit, performing to an audience of over 3000 people as part of the BigCityBeats WORLD CLUB DOME Cruise Edition. The results of his work were beamed to the main stage on board the cruise ship Norwegian Pearl moored at the Spanish island of Ibiza. His set of around 12 minutes was played as part of the regular program of DJs at the festival. This was the first time that a DJ set has been played from the International Space Station and, indeed, from space (image credit: World Club Dome/ESA)

- Under the banner of the World Club Dome, this cooperation resulted in a ‘zero-g' dance party, combining a fascination of science with the joy and fun of dance music in a first-of-its-kind flight in Europe. ESA astronauts Pedro Duque and Jean-Francois Clervoy joined the ‘weightless' flight and provided background training and safety tips to the DJs and party-goers.

- This was followed by another parabolic flight in March of this year to promote the WORLD CLUB DOME Space Edition, a three-day event in Frankfurt in June where the main stage was dominated with a 28 m high Ariane 5 rocket and featured special guests ESA astronauts André Kuipers and Matthias Maurer.

ISSImagery2019_Auto33

Figure 46: DJ Luca's target audience: the Norwegian Pearl, moored in Ibiza (image credit: World Club Dome/ESA)

- Bernd Breiter, CEO of BigCityBeats GmbH, said, "I had goosebumps and tears in my eyes when I saw Luca raising the WORLD CLUB DOME flag on the Space Station. When the first music started to play during the broadcast from space, I cannot even begin to describe my feelings in that moment. This has been my dream for many years to create the first club in space and, on a much broader scale, to connect science and music, which I hope will inspire generations to come."

• August 11, 2019: A glorious winter morning view greeted astronauts as they passed over the rugged peaks of Peru's Cordillera Blanca, snow-capped peaks cast long shadows over the valleys. 40)

- The highest mountains in Peru are visible, including Huascarán, which soars 6,768 meters (22,204 feet) above sea level. The peaks have been eroded by glaciers into steep curving ridges—known as cirques. With over 700 glaciers, the Cordillera Blanca holds much of the land ice in Peru.

- Light fog filled the valleys as the Sun rose. High overnight relative humidity, low surface winds (visualized here), and the morning temperature inversion caused the fog in the lower altitudes. The major mining city of Huaraz is barely visible under the fog cover, but the light color of the Pierina Mine, an open pit gold mine, stands out from the darker land surrounding it.

ISSImagery2019_Auto32

Figure 47: This astronaut photograph ISS059-E-64089 was acquired on May 18, 2019, with a Nikon D5 digital camera using a 240 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, caption by Sara Schmidt)

• August 6, 2019: The International Space Station regularly transits the Sun but often along a very narrow ground path, which makes it hard to record. Once you lock down the best viewing location on Earth, timing is a critical factor: transits of the Sun last only half a second. 41)

- Using a DSLR camera attached to a 150/750 telescope recording in full HD at 30 frames per second, Javier was able to capture the 0.8 seconds it took for the Station to pass. The image is made up of those stacked frames.

- An astronomy fan from a young age, Javier's passion has grown with him. He takes photographs of any near-Earth event, because "who says that daytime astronomy is boring?"

- Meanwhile, on the International Space Station the six-astronaut crew is busy carrying out science experiments, maintain the Station and getting their daily dose of exercise.

- Summer is less noticeable in the controlled environment of the Station, but the atmosphere is pleasant. ESA astronaut Luca Parmitano is finding time to sneak in selfies while working with friends.

ISSImagery2019_Auto31

Figure 48: Like most people this season, the International Space Station is chasing some Sun. Amateur astrophotographer Javier Manteca captured this transit of the Sun on 2 August, at 17:10 CEST from Fuenlabrada in Spain (image credit: Javier Manteca)

• August 5, 2019: Over two weeks have flown by since ESA astronaut Luca Parmitano was launched to the International Space Station for his second six-month stay in orbit. His arrival, alongside NASA astronaut Andrew Morgan and Roscosmos Soyuz commander Alexander Skvortsov, boosted the Station's population to six and the crew has been busy ever since – performing a wide range of science in space. 42)

- With the start of Luca's Beyond mission on 21 July, and the capture of SpaceX's Dragon 18 cargo vehicle on 27 July, came a host of new European experiments. We begin with a couple you may recognize from Alexander Gerst's Horizons mission as Luca re-adapts to his orbital workplace.

- When you lift a cup of coffee, you are moving it against gravity. The amount of force you use to lift that cup or move any other object is something you learn as a child but, in the weightlessness of space, it is something astronauts must relearn.

- The GRIP experiment studies how the central nervous system controls movements and the forces astronauts use to manipulate objects with their hands. After setting the experiment up in Europe's Columbus laboratory on 28 July, both Luca and Andrew performed their first Grip sessions last week.

- Luca will take part in three GRIP sessions while on the International Space Station. He already performed two sessions on Earth and he will perform another three following his return. During each session, Luca will hold an object equipped with measuring instruments between his right thumb and index finger and carry out a variety of movements.

- The results will help researchers understand potential hazards for astronauts as they move between different gravitational environments and improve the design of haptic interfaces used during deep space missions.

- GRASP (Gravitational References for Sensimotor Performance) is another one you may remember from Alexander's Horizons mission. Here researchers seek to better understand how the central nervous system integrates information from different senses, such as sight, sound and touch, to coordinate hand movements and determine what role gravity plays. Both Luca and Andrew also performed their first in-space GRASP sessions at the end of last week, wearing virtual reality headsets as they carried out a range of tasks.

- The results of GRASP will be helpful in guiding astronauts during spacewalks and developing the most effective ways of controlling robots remotely from space. But they will also help us better treat disorders relating to vertigo, dizziness, balance and spatial orientation on Earth and could help surgeons and other professionals who need to tele-operate equipment.

ISSImagery2019_Auto30

Figure 49: ESA astronaut Luca Parmitano performs a European experiment called GRIP that studies astronauts' perception of mass and movement and how they interface with the human body and change in microgravity (image credit: ESA/NASA)

First glimpse at new experiments

- The first new experiment Luca set-up as part of his second mission was NutrISS. Developed by Kaiser Italia for the Italian space agency ASI and ESA, this experiment will periodically assess any changes in Luca's body weight, fat mass, and fat-free mass during spaceflight, juxtapose this with his diet and better equip medical teams to provide advice for maintaining good health in orbit.

- Luca will use an app called Everywear to record the results of each measurement session and log his nutritional intake for five consecutive days. Everywear is like the space version of MyFitnessPal and allows astronauts to track their intake by scanning barcodes on the food they eat. The information Luca enters into Everywear will be accessible to his medical team who will look at it in relation to his measurements and provide dietary recommendations.

- As well as NutrISS, Luca also set-up Biorock by retrieving experiment containers from the Minus Eighty-Degree Laboratory Freezer for ISS (MELFI) and installing them in the small temperature-controlled Kubik incubators. The University of Edinburgh experiment will continue to run in Kubik, unleashing a microbe on a basalt rock and assessing the biofilm that forms over the rock as the organism grows. Observing the rock-microbe system in space will help researchers understand the potential for biomining on other planetary bodies like asteroids, where new resources could be unearthed.

Looking ahead

- There is plenty planned for the crew in the weeks to come, but one highlight is the installation of Rubi (Reference mUltiscale Boiling Investigation). Developed and built by Airbus for ESA, Rubi experiment addresses the fundamentals of the boiling of fluids and will be installed by Luca in the Columbus module this Friday 9 August. It is similar to an experiment recently conducted during ESA's 71st Parabolic flight campaign to investigate boiling process in altered states of gravity.

- Rubi's core element is a cell filled with fluid, which can be heated and cooled using electrical voltage. The boiling process will be triggered on a metal-coated glass heater using a laser, while high-resolution cameras record the formation and growth of vapor bubbles in both the visible and infrared spectrum. Findings from this experiment could help the production of more efficient and environmentally friendly household appliances (stoves, radiators) and heat exchangers for industrial manufacturing processes.

• August 4, 2019: An astronaut onboard the International Space Station took this photograph of the St. Louis metropolitan area. The photograph contrasts the agriculturally dominated regions of western Illinois and the more densely urbanized areas of eastern Missouri. St. Louis lies on the west bank of the Mississippi River, which also forms the border between the two states. At the time of this photo, some flooding was visible along the river. 43)

- Initially founded in the 1760s as a fur-trading outpost, St. Louis grew up to become a major port on the Mississippi River. Throughout the 1800s and 1900s, the evolution of transportation and infrastructure led to the suburbanization of the city. Roads, railways, and a mighty river meet in this longtime trading hub of the central United States.

- Public transportation, railroads, and advanced road networks developed as the population increased, which allowed for the gradual migration of people from the city center into the outer reaches of the greater St. Louis area. The urban pattern in the image includes a series of small-scale grids that follow the lines of the major railways and highways in the region. The network of roadways radiates out from the urban core and connects smaller towns.

ISSImagery2019_Auto2F

Figure 50: The astronaut photograph ISS060-E-556 was acquired on June 25, 2019, with a Nikon D5 digital camera using a 290 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 60 crew (image credit: NASA Earth Observatory, caption by Laura Phoebus)

• July 30, 2019: NASA is validating modern crew health technologies aboard the International Space Station before sending astronauts on a series of Artemis expeditions to orbit and land on the Moon, beginning in 2024. One of the most important conditions associated with crew health during spaceflight is air quality. Trace gas contaminants in the crew environment can have effects ranging from immediate discomfort to long-term health conditions. 44)

- Currently, atmosphere quality aboard the space station is assessed by periodic sampling and ground-based analysis using sophisticated instruments. Since samples cannot be returned to Earth during future exploration missions, a complement of smaller and more reliable instruments such as SAM (Spacecraft Atmosphere Monitor) becomes essential to monitor the crew environment.

- "Monitoring the spacecraft cabin atmosphere and maintaining safe air quality is important to protecting astronaut health," said Jitendra Joshi, senior technical advisor at NASA Headquarters. "SAM has the ability to immediately detect trace contaminants that pose potential threats to crewmembers' well-being, which is critical for future human spaceflight missions, especially missions to the Moon and Mars, when we won't have the benefit of sending samples back to Earth."

Meet SAM

- This type of analysis typically requires the use of a GCMS (Gas Chromatograph Mass Spectrometer) instrument which separates, identifies and quantifies complex mixtures of chemicals. SAM is one of the smallest autonomous GCMS instruments ever built. GCMS is considered the "gold standard" in substance identification because of its ability to detect and positively identify the presence of trace amounts of a particular substance and allows for a much finer degree of substance identification.

- The current version of SAM will continuously monitor the major components found in air — oxygen, carbon dioxide, nitrogen and methane, and humidity levels in realtime. The next version of SAM is being developed to measure the full complement of atmospheric including trace gases.

- SAM's compact design allows for it to perform instrument science operations inside the space station's EXPRESS (EXpedite the PRocessing of Experiments to Space Stations) Racks. EXPRESS Racks are multipurpose payload rack systems that store and support research. SAM's size also allows it to be easily deployed throughout the various nodes of the space station to monitor different astronaut environments and activities, such as exercise and sleep.

ISSImagery2019_Auto2E

Figure 51: NASA's SAM (Spacecraft Atmosphere Monitor), which flew as payload aboard the SpaceX Dragon cargo spacecraft, SpaceX CRS-18, that launched on 25 July from Cape Canaveral Air Force Station in Florida (image credit: NASA)

- While on station, information concerning SAM's technical performance as well as health and operational status, will constantly be routed through the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Alabama. The HOSC will then route the data to the operation team at NASA's Jet Propulsion Lab's (JPL) Earth Science Mission Operations Center.

- While the SAM is fully autonomous and does not require data processing for issuing reports concerning air quality elements, JPL scientists will have the ability to closely analyze the data for anomalies and other unexpected findings.

- SAM was developed by JPL with support from NASA's Advanced Exploration Systems (AES) division within the Human Exploration and Operations Mission Directorate in Washington. SAM is a technology demonstration and is slated to begin work aboard the space station on July 30.

- NASA's human lunar exploration plans are based on a two-phase approach: the first is focused on speed – landing on the Moon within five years, while the second will establish a sustained human presence on and around the Moon by 2028. The agency will use what we learn on the Moon to prepare for the next giant leap – sending astronauts to Mars.

• July 28, 2019: The International Space Station was crossing over the equator when an astronaut looked east and took this photograph just after sunrise. The strip of land outlined by morning sunglint is the northern peninsula of the Indonesian island of Sulawesi. The darker areas in the lower portion of the photo mark the edge of the day-night line, also known as the terminator. 45)

- Indonesia sits in a notoriously cloudy region of the globe. In the image foreground, clouds cast long shadows as the Sun's rays strike at a low angle. Toward the horizon, clouds cast shorter shadows where the Sun is already higher in the sky.

- Scientists who work with astronaut photos are well-practiced at identifying places on Earth through the perspective of an astronaut looking out from the ISS. However, consistently cloudy regions are more difficult to recognize. Sunglint helps by highlighting coastlines that are often obscured by clouds and aerosols. Yet those same clouds may have been exactly what inspired the astronaut to capture this scene.

ISSImagery2019_Auto2D

Figure 52: This astronaut photograph ISS059-E-67875 was acquired on May 19, 2019, with a Nikon D5 digital camera using a 58 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, caption by Andrea Meado)

• July 21, 2019: These two images of Nova Scotia and Prince Edward Island, taken from different directions, give a sense of the astronaut flight experience. 46)

- Using short camera lenses to obtain wide fields of view, an astronaut on the International Space Station (ISS) focused on the intricate coastline of Nova Scotia in eastern Canada. These two images of this peninsula, taken from different directions, give a sense of the astronaut flight experience. From an orbital perspective, the same feature on Earth's surface can look very different in just a minute or two.

- The two images also appear at slightly different scales due to the astronaut changing the focal lengths of the lens. The glint image is taken with a longer lens (50 mm), making the Nova Scotia peninsula seem bigger and closer than it does in the later image (35 mm). This is despite the fact that the first image was taken from 600 km distance and the second from about 350 km away (relative to the orbital position of the ISS).

- With the different play of light, a ghostly reflection of what may be an ISS solar array is visible at lower right in the second image (Figure 54).

ISSImagery2019_Auto2C

Figure 53: This photograph, observed on 7 May 2019, shows Nova Scotia to the east of the space station, contrasted against the brilliance of the Sun reflecting off of the Atlantic Ocean. "Sunglint" images like this can highlight fine coastline details: Nova Scotia's shoreline, northern arms of the Bay of Fundy, and the outline of Prince Edward Island (image credit: Astronaut photographs ISS059-E-59135 and ISS059-E-52689 were acquired on 7 May 2019, with a Nikon D5 digital camera using 50 mm and 35 mm lenses (respectively) and are provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The images were taken by a member of the Expedition 59 crew. Caption by M. Justin Wilkinson and Susan Runco)

ISSImagery2019_Auto2B

Figure 54: Taken 2 minutes and 18 seconds later, the second view is not only reversed—north to the right instead of the left and the Atlantic in the foreground—but the Sun is behind the camera and there is more color contrast. Land surfaces are brighter than the sea surface, which appears in a generally uniform color. The rounded southern end of Nova Scotia is prominent, having been almost lost to view in the first image. Coastline detail is much reduced. The warm tone of sediment at the head of the Bay of Fundy has become visible, and a hint of snow is visible at the northern end of the peninsula (image credit: Astronaut photographs ISS059-E-59135 and ISS059-E-52689 were acquired on 7 May 2019, with a Nikon D5 digital camera using 50 mm and 35 mm lenses (respectively) and are provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The images were taken by a member of the Expedition 59 crew. Caption by M. Justin Wilkinson and Susan Runco)

• July 20, 2019: Fifty years to the day that astronauts Neil Armstrong and Buzz Aldrin stepped on the Moon in a giant leap for humanity, NASA astronaut Andrew Morgan and two fellow crew members arrived Saturday for their mission aboard the International Space Station, where humans have lived and worked continuously for more than 18 years. 47)

- The Soyuz MS-13 spacecraft carrying Morgan, Luca Parmitano of ESA (European Space Agency) and Alexander Skvortsov of the Russian space agency Roscosmos launched at 12:28 p.m. EDT July 20 (16:28:21 UTC, 9:28 p.m. Kazakhstan time) from the Baikonur Cosmodrome in Kazakhstan. Their spacecraft docked to the station's Zvezda service module at 6:48 p.m., after a four-orbit, six-hour flight, and they are scheduled to open hatches and be welcomed aboard the orbiting laboratory at approximately 8:50 p.m.

ISSImagery2019_Auto2A

Figure 55: The Soyuz MS-13 carrying Expedition 60 Soyuz Commander Alexander Skvortsov of Roscosmos, flight engineer Drew Morgan of NASA, and flight engineer Luca Parmitano of ESA (European Space Agency), launches at 12:28 p.m. EDT (9:28 p.m. Baikonur time) Saturday, July 20, 2019, from the Baikonur Cosmodrome in Kazakhstan (image credit: NASA/Joel Kowsky)

- Their arrival restores the station's crew complement to six. They join NASA astronauts Nick Hague, Christina Koch and Expedition 60 Commander Alexey Ovchinin of Roscosmos.

- The Expedition 60 crew will spend more than six months conducting about 250 science investigations in fields such as biology, Earth science, human research, physical sciences, and technology development. Work on the unique microgravity laboratory advances scientific knowledge and demonstrates new technologies, making research breakthroughs that will enable long-duration human and robotic exploration of the Moon and Mars.

- One of those key technology developments will be the arrival and installation of the second docking port for commercial crew spacecraft – SpaceX's Crew Dragon and Boeing's Starliner. International Docking Adapter-3 (IDA-3) is set to launch to the station on SpaceX Dragon's 18th commercial resupply services mission at 6:24 p.m. Wednesday, July 24. Coverage of the SpaceX launch will air on NASA Television and the agency's website beginning at 6 p.m.

- Once the docking port arrives, flight controllers in Houston will use the Canadarm2 robotic arm to extract it from Dragon's cargo hold and position it over Pressurized Mating Adapter-3, on the space-facing side of the station's Harmony module. Hague and Morgan are scheduled to conduct a spacewalk no earlier than mid-August to install the docking port, connect power and data cables, and install a new high-definition camera as part of ongoing upgrades to the station's external camera system.

- Highlights of upcoming investigations the crew will facilitate on the orbiting laboratory in the unique microgravity environment include the growth of moss aboard the station, a platform to attempt successful printing of biological tissues and bio-mining in space.

- Parmitano and Skvortsov are scheduled to remain aboard the station with Koch until February 2020, leaving Morgan on station for an extended stay. Hague and Ovchinin are set to return to Earth on Oct. 3.

- A global endeavor, more than 230 people from 18 countries have visited the International Space Station, which has hosted more than 2,500 research investigations from researchers in 106 countries.

• July 17, 2019: On 20 July 2019 (Saturday) astronaut Luca Parmitano, NASA astronaut Drew Morgan and Roscosmos commander Alexander Skvortsov will be launched to the International Space Station from the Baikonur cosmodrome in Kazakhstan. 48)

- The four-orbit, six-hour journey to the International Space Station in the Soyuz MS-13 spacecraft will be the second spaceflight for Luca, the third for Alexander and the first for Drew.

- It marks the start of Luca's 'Beyond mission' and, once the trio has been welcomed aboard by current crew members Alexy Ochivin of Roscosmos and Nick Hague and Christina Koch of NASA, the beginning of Expedition 60.

ISSImagery2019_Auto29

Figure 56: In the Integration Building at the Baikonur Cosmodrome in Kazakhstan, Expedition 60 crewmembers Drew Morgan of NASA (left), Alexander Skvortsov of Roscosmos (center) and Luca Parmitano of the European Space Agency (right) pose for a selfie in front of the first stage engines of their Soyuz booster on 16 July as part of pre-launch preparations (image credit: GCTC, A. Shelepin)

• July 16, 2019: An astronaut onboard the International Space Station (ISS) captured this oblique photograph of Florida, on the southeastern coast of the United States. The image highlights the state's many lakes, as well as the shallow, light-toned waters of the Florida Keys. 49)

- Most of Florida's land surface overlies thick carbonate deposits (typically limestone) that have been shaped into the Floridan aquifer system. This aquifer developed over time through the dissolution of carbonate rocks by surface water or groundwater, creating a karst landscape. Most of the state today is capped with sand and clay deposits that prevent carbonates from being exposed at the surface. However, these deposits are thin to nonexistent in a few areas, allowing a higher rate of carbonate dissolution to take place. This process results in sinkholes that fill with ground water, creating a chain of lakes.

- Just off the southern coast of the state, the Florida Keys extend southwest into the Gulf of Mexico. This chain of islands is composed of fossilized remnants of ancient coral reefs and sandbars. Before the 19th century, most people avoided the Keys because of the dangers from reefs and pirates. In the 1800s, the islands became major trading centers between the Gulf and Atlantic coasts. This positive attention and new commerce helped develop the area into one of Florida's most popular tourist destinations.

- Along Florida's Atlantic coast, Cape Canaveral Air Force Station and NASA's Kennedy Space Center have been the sites for all American-launched manned spaceflights, including the launch of Apollo 11 on July 16, 1969. Much of the ISS was also carried into space on space shuttle flights from Cape Canaveral.

ISSImagery2019_Auto28

Figure 57: This astronaut photograph ISS058-E-28096 was acquired on March 7, 2019, with a Nikon D5 digital camera using a 20 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 58 crew (image credit: NASA Earth Observatory, caption by Sarah Deitrick)

• July 10, 2019: While orbiting over the Gulf of Mexico in April 2019, an astronaut aboard the International Space Station (ISS) looked northward to take this highly oblique photo of the Mississippi River delta. The Mississippi River watershed is one of the largest in the world, consisting of more than a hundred tributaries, including the Red, Ohio, and Missouri Rivers. 50)

- The Mississippi watershed extends from the Appalachians to the Rocky Mountains and contributes to about 40 percent of the drainage in the continental United States. It drains water and sediment from 31 U.S. states, delivering both to the Gulf of Mexico via the Atchafalaya and Mississippi River deltas. Longshore currents carry much of those sediments west from the deltas and deposit it along Gulf Coast beaches. A large pulse of sediment, likely the result of widespread flooding during 2019, is visible along the western Louisiana coastline.

- The light-toned land on either side of the river distinguishes its alluvial floodplain. Because rivers provide a transportation system and a reliable source of water, people often seek out floodplains for building cities and industries and for developing farms. Along the entire length of the Mississippi River, agricultural land use is extensive. Excess nitrogen and phosphorus from agriculture runs off into the river drainage systems and eventually enters the Gulf of Mexico. Local and regional flooding can increase stream flow and erosion rates, intensifying this process.

- Each summer, hypoxic (low oxygen) "dead zones" can threaten aquatic life in the Gulf of Mexico. These dead zones can be caused by nutrient pollution; by limited mixing between water layers due to density and temperature differences; and by a drastic increase in algae blooms—all of which deplete oxygen levels in the water. Sessile (fixed in place) organisms like corals, shellfish, and aquatic plants are unable to escape these dead zones and will often die, harming local food webs and the fishing industries that depend upon them.

ISSImagery2019_Auto27

Figure 58: Astronaut photograph ISS059-E-36323 was acquired on April 26, 2019, with a Nikon D5 digital camera using a 50 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, caption by Sara Schmidt)

• July 5, 2019: The next crew to liftoff to the International Space Station arrived at the Baikonur Cosmodrome launch site on the U.S. Independence Day awaiting a historic July 20 liftoff. 51)

ISSImagery2019_Auto26

Figure 59: Expedition 60 crewmembers (from left) Drew Morgan, Alexander Skvortsov and Luca Parmitano affix a crew insignia sticker to the hull of the Gagarin Cosmonaut Training Center aircraft as they flew to their training base in Kazakhstan July 4 (image credit: NASA, Roskosmos)

- The new Expedition 60 crewmates Andrew Morgan, Luca Parmitano and Alexander Skvortsov are in final mission preparations in Kazakhstan. The trio arrived July 4 counting down to a July 20 launch to the orbiting lab 50 years to the date NASA landed humans on the Moon for the first time.

- Morgan is going to space for the first time and will meet his fellow Class of 2013 NASA astronaut members, Christina Koch and Nick Hague, who have been at the station since March. Parmitano is on his second mission. Skvortsov, who is leading the mission aboard the Soyuz MS-13 spacecraft, is making his third visit to the space station.

- Back aboard the station, the three orbiting Expedition 60 crewmembers continued science and maintenance duties. Koch sampled the station's life support system for microbes while Hague serviced a specialized science furnace. Ovchinin checked on Russian station systems and monitored a radiation exposure study.