Minimize ISS Utilization: Sample imagery

ISS Utilization: Sample imagery taken by astronauts on and from the ISS + Events

This file is a loose collection of some imagery samples taken by astronauts off and from the ISS (International Space Station). Astronauts who experience Earth from orbit often report feelings of awe and wonder, of being transformed by what they describe as the magic such a perspective brings. This phenomenon is called the ”overview effect.” The short descriptions in the following entries are presented in reverse order .


Note: As of June 2019, the previously large ISS-Imagery2 and ISS-Imagery files have been split into four files, to make the file handling manageable for all parties concerned, in particular for the user community.

This article covers the ISS-Imagery plus some status in the period 2019

ISS-Imagery in the period 2018

ISS-Imagery in the period 2017-2016

ISS-Imagery in the period 2015-1998




Mission status and imagery of 2019

• October 13, 2019: An astronaut aboard the International Space Station (ISS) focused a long lens on a brightly colored group of fields in the Kursk region of Russia, not far north of the Ukrainian border. Kursk lies at the heart of Russia’s “Black Belt” agricultural region, so-named for its rich black soils. 1)

- The bright fields result from the flowers of a ripening crop of rapeseed (also known as oilseed rape), a crop cultivated for its oil-rich seeds. (Brilliant rapeseed flowers have captured astronaut attention before, as in this shot of the Paris region.)

- The jagged boundaries of the fields are forested stream courses that remain unplowed in order to prevent soil erosion. Two small towns stand nearby: Kotelnikovo, to the west of the fields (north is to the right), and Malye Kryuki, to the east, near a dark-toned reservoir. For a sense of scale, the yellow fields extend for nearly 8 kilometers from left to right in the image.

- Photographs of Earth taken from the ISS with commercial, off-the-shelf digital cameras do not currently include geolocation information that can be used to precisely determine the geographic locations of features in an image. This photograph was one of the more difficult to locate by a ground-based analyst because it was taken with a long lens (which magnifies the view, but therefore shows a small area on the ground), and because the nadir point of the spacecraft was more than 300 kilometers to the southeast.

ISSImagery2019_Auto4F

Figure 1: Yellow flowers brighten the landscape of southwestern Russia. The astronaut photograph ISS052-E-10195 was acquired on June 28, 2017, with a Nikon D4 digital camera using a 1150 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 52 crew (image credit: NASA Earth Observatory, caption by Justin Wilkinson)

• October 10, 2019: European Space Agency (ESA) astronaut Luca Parmitano is preparing to step out into space for his first spacewalk of the Beyond mission. 2)

- Scheduled for 25 October, he will work with NASA astronaut Jessica Meir to replace nickel hydrogen batteries with newer lithium ion batteries and install battery adapter plates on the Space Station’s Port-6 truss structure.

- This is a process fellow ESA astronaut Thomas Pesquet knows well, having replaced batteries on another power channel during his Proxima mission. We asked him to tell us more about the task and how the crew will prepare.

The lead-up

- Known to the crew as an EVA (Extravehicular Activity), each spacewalk is planned up to a year in advance.

- On Station, preparation begins around two weeks ahead, with a set of procedures called the “Road to EVA”.

- “Preparing for a spacewalk will make up 2-3 hours of your schedule every day during this time,” Thomas explains. “The crew often carry out prep in their personal time as well.”

The big day

- Live coverage of Luca and Jessica’s spacewalk starts on NASA TV at 10:30 GMT (12:30 CEST), but the crew will begin their preparation around 6:00. And there is to be no showering, shaving, or applying deodorant for at least a day in advance, as any remnants of these products could mix with the pure oxygen inside the suit and pose a fire risk.

- Astronauts wear a liquid cooling garment underneath their spacesuit. This is connected to the water system that keeps them cool, or warm, by circulating water around their body. They also don a medical monitor and put a dosimeter in their pocket to measure radiation before entering the hatch.

- Thomas describes the process inside the airlock as “like scuba diving in reverse”, as astronauts breathe in a controlled way to rid their blood of nitrogen and adjust to lower pressure.

- A third crew member, known as the Intravehicular (IV) crew member, is also isolated in the airlock, before it goes to vacuum. This person helps the astronauts with their oxygen masks and into their spacesuits, while making sure everything is checked, tethered and ready for a safe and successful sortie.

- It is a role Luca will play in the two spacewalks before his, on 15 and 21 October.

ISSImagery2019_Auto4E

Figure 2: Astronauts assist spacewalkers in the Quest airlock. NASA astronauts Andrew Morgan (left) and Christina Koch (right) are suited up in U.S. spacesuits before beginning a seven hour and one minute spacewalk to upgrade the station's large nickel-hydrogen batteries with newer, more powerful lithium-ion batteries. In the center, NASA Flight Engineer Jessica Meir and Commander Luca Parmitano of ESA assist the spacewalking duo (image credit: NASA)

Out in space

- Before exiting the airlock, Thomas says, extreme focus is the overriding feeling.

- “Everybody’s watching, so many people have been involved in the preparation, and the risks are so much higher when you’re outside the Space Station,” he explains. “The only thing you can’t really prepare for are the day/night cycles.

- “During the night, you only have your helmet light, so you can’t really see anything except what you’re working on. And because you’re working in all body orientations, it’s easy to get disoriented. But you know you can always follow your tether back towards the hatch.”

- After exiting the airlock, Thomas says one astronaut will prepare the worksite while the other breaks torque on the pre-positioned adapter plates. Each astronaut will then work to install the adapter plates, needed to replace two older batteries with one new one.

- The spacewalk on 25 October is the one of five scheduled for October. Even more are expected in November as Luca ventures out again with the complex task of repairing and enhancing dark matter hunter AMS-02 – a structure never designed to be maintained in orbit.

ISSImagery2019_Auto4D

Figure 3: The EMU (Extravehicular Mobility Unit) spacesuit. Learn about the components of the EMU spacesuit (image credit: ESA)

• October 9, 2019: For an astronaut looking out of the International Space Station windows, city lights are brighter than the stars. To tackle light pollution citizen scientists are urged to help map out the problem on their smartphones by identifying images of cities taken from space. 3)

- Astronaut pictures are the highest-resolution, color images of night available from orbit. “The International Space Station is the best observation point humankind has for monitoring Earth at night,” says Kevin Gaston, project leader of the Lost at Night project that raises awareness of light pollution.

- There are half a million high-resolution pictures of Earth at night in NASA’s Astronaut Photography of Earth archives. Most images in the archive are uncatalogued and do not have a location assigned to them.

- Lost at Night uses the power of citizen science to match images and identify the location of the astronauts’ photographs online.

- This helps the study of light pollution and how it affects life on our planet.

- Artificial light has a broad range of impacts on the biological clock of both nocturnal and diurnal species. Light changes lead to knock-on effects that can impact whole ecosystems, from plant flowering times to migration disruptions for birds and turtles. Bright nights affect people’s sleep and can negatively impact health.

- More astronaut pictures and more clues from Earth’s inhabitants will help researchers better evaluate these effects over time and encourage actions to optimize street lighting.

The human gaze

- Human eyes can help shine a light on the huge catalog.

- “While computer algorithms have trouble distinguishing between stars, the Moon and cities, people are more reliable when it comes to recognizing patterns and analyzing complex images,” says Alejandro Sánchez de Miguel, a research fellow at the UK’s University of Exeter and lead investigator of the project.

- Over 30,000 images had their location pinpointed on by volunteers, but more help is wanted to complete the puzzle.

- “We don’t know which direction the astronauts pointed the camera from the Station. We only know the time it was taken and the area of Earth they were flying over,” explains Alejandro.

- The website invites you to identify cities lit up at night within a range of a 1000 km.

ISSImagery2019_Auto4C

Figure 4: The Iberian Peninsula at night, showing Spain and Portugal. Madrid is the bright spot just above the center (image credit: NASA)

- “Forget about playing Candy Crush in idle times. This is a great opportunity to learn about geography, the distribution of human activity and how your home town looks like from space,” adds Alejandro.

- There are many scientific projects associated with images taken from the International Space Station.

- Astronauts take these pictures in their free time from the Space Station’s Cupola, a seven-window observation module.

- “European astronauts are talented photographers, but it is not only about sharing beautiful pictures. Their contribution is key to scientifically demonstrate the true extent and impact of light pollution,” points out Lucía García, project manager of the precursor Cities at Night project.

ISSImagery2019_Auto4B

Figure 5: SA astronaut Samantha Cristoforetti on the International Space Station 3 February 2015 during her Futura mission. Samantha is living and working on the Station as part of the Expedition 42 crew (image credit: ESA7NASA)

Bright intelligence

- Users are presented an image from an unknown city and they must try to find the best match by comparing it with several options.

- Because humans make mistakes too, this initiative needs inputs from five people per image to bring the margin of error down. From there, artificial intelligence takes over.

- The objective is to identify 90,000 images – enough to train artificial intelligence to automatically recognize a collection of pixels and locate images.

ISSImagery2019_Auto4A

Figure 6: Lost at Night interface. To tackle light pollution citizen scientists are urged to help map out the problem on their smartphones by identifying images of cities taken from space. Lost at Night uses the power of citizen science to match images and identify the location of the astronauts’ photographs online. Users are presented an image from an unknown city and they must try to find the best match by comparing it with several options. This helps the study of light pollution and how it affects life on our planet (image credit: Lost at Night)

• October 8, 2019: This day (Tuesday) was packed with more spacewalk preparations along with ongoing microgravity research aboard the International Space Station. The six-member Expedition 61 crew also conducted emergency response training and cargo transfers from a Japanese cargo craft. 4)

- NASA astronauts Andrew Morgan and Christina Koch are going out on their second spacewalk together Friday at 7:50 a.m. EDT. The duo today reviewed spacewalk procedures and set up the tools they will use to continue upgrading the station’s large nickel-hydrogen batteries with newer, more powerful lithium-ion batteries.

- Commander Luca Parmitano serviced U.S. spacesuit components and practiced Canadarm2 robotics maneuvers to support Friday’s excursion. NASA TV coverage begins its live coverage of October’s second spacewalk at 6:30 a.m.

- Morgan had a few moments set aside Tuesday to swap batteries inside Astrobee, the free-flying robotic assistant being tested aboard the orbiting lab. Afterward, he joined NASA Flight Engineer Jessica Meir inside Japan’s HTV-8 resupply ship to continue unpacking crew supplies and station hardware.

- Koch switched to space gardening after spacewalk reviews and watered plants in the Columbus laboratory module. She and Meir finally wrapped up the workday with some light maintenance work in the station’s environmental health system.

- All six crewmembers, including cosmonauts Alexander Skvortsov and Oleg Skripochka, reviewed emergency roles and responsibilities after lunch today. The crew familiarized itself with safety gear, communication protocols, escape paths and evacuation procedures.

ISSImagery2019_Auto49

Figure 7: Expedition 61 Commander Luca Parmitano of ESA (European Space Agency) assists NASA astronauts Andrew Morgan (left) and Christina Koch (right) in their U.S. spacesuits (image credit: NASA)

• October 6, 2019: Lightning struck the Kaibab Plateau in Arizona along the northern rim of the Grand Canyon on July 12, 2019, starting a wildfire (the Castle Fire) that would eventually burn more than 19,000 acres. As it was still burning almost a month later, an astronaut onboard the International Space Station shot this photograph of smoke-filled canyons in the region. 5)

- During morning and evening hours, dense smoke often settles in low-lying areas and becomes trapped due to temperature inversions—when a layer within the lower atmosphere acts as a lid and prevents vertical mixing of the air. Steep canyon walls act as a horizontal blockade, concentrating the smoke within the deepest parts of the canyon and increasing the strength of the inversion. As the day progresses and temperatures rise, the air will usually begin to mix and the smoke will no longer be confined to the canyon.

- As this image shows, without vertical mixing, the smoke from Lookout Canyon travels throughout the extensive system of side canyons, spreading the smoke to different areas near the ground, rather than dispersing upward.

ISSImagery2019_Auto48

Figure 8: This astronaut photograph ISS060-E-38049 was acquired on August 20, 2019, with a Nikon D5 digital camera using an 800 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 60 crew (image credit: NASA Earth Observatory, caption by Sara Schmidt)

• October 3, 2019: NASA astronaut Nick Hague returned to Earth from the International Space Station on Thursday, alongside Soyuz commander Alexey Ovchinin of the Russian space agency Roscosmos and visiting astronaut Hazzaa Ali Almansoori from the United Arab Emirates (UAE). The crew landed safely at 6:59 a.m. EDT in Kazakhstan. 6)

- Hague and Ovchinin launched March 14, along with fellow NASA astronaut Christina Koch. Six hours later, they began their 203-day mission on the station, orbiting Earth 3,248 times and traveling 86.1 million miles.

- Koch remains aboard the orbiting laboratory for an extended mission that will provide researchers the opportunity to observe effects of long-duration spaceflight on a woman, in preparation for human missions to the Moon and Mars. She is expected to return to Earth in February 2020, almost a year after her launch.

ISSImagery2019_Auto47

Figure 9: NASA astronaut Nick Hague, Russian cosmonaut Alexey Ovchinin and visiting astronaut from United Arab Emirates (UAE) Hazzaa Ali Almansoori returned to Earth from the International Space Station at 6:59 am in Kazakhstan (image credit: NASA)

- For Almansoori, this landing completed an eight-day stay on the station that covered 128 orbits of Earth and a journey of 3.1 million miles since launching Sept. 25 with NASA astronaut Jessica Meir and Oleg Skripochka of Roscosmos. Almansoori made history as he became the first person from the UAE to fly in space.

- After postlanding medical checks, Hague will return to Houston, and Ovchinin and Almansoori will return to Star City, Russia.

- The Expedition 60 crew contributed to hundreds of experiments in biology, biotechnology, physical science and Earth science, including investigations into devices that mimic the structure and function of human organs, free-flying robots, and an instrument to measure Earth’s distribution of carbon dioxide.

- Hague conducted three spacewalks during his mission, totaling 19 hours and 56 minutes. Ovchinin conducted one spacewalk lasting 6 hours and 1 minute.

- Hague’s first two spacewalks in March continued the overall upgrade of the station’s power system with newer, more powerful lithium-ion batteries on one pair of the station’s solar arrays. During his third spacewalk, he and NASA astronaut Andrew Morgan successfully installed the second of two international docking adapters that Boeing CST-100 Starliner and SpaceX Crew Dragon commercial crew spacecraft will use to connect to the space station.

- Hague completes his second flight in space totaling 203 days, while Ovchinin has now spent 375 days during three flights. Hague and Ovchinin flew together on an abbreviated mission in October 2018, cut short by a technical problem that triggered an ascent abort minutes after launch and a safe landing back on Earth.

- When the Soyuz MS-12 spacecraft with Hague, Ovchinin and Almansoori undocked at 3:37 a.m. Oct. 3, Expedition 61 officially began aboard the station, with NASA astronauts Koch, Meir and Morgan, cosmonauts Alexander Skvortsov and Oleg Skripochka of Roscosmos as flight engineers, and ESA (European Space Agency) astronaut Luca Parmitano as the station’s commander.

• October 1, 2019: When Earth is so far away, it helps to have friends nearby. The usual six-astronaut crew of the International Space Station welcomed three more and a cargo vehicle last week, making for a full house on the orbital outpost. 7)

ISSImagery2019_Auto46

Figure 10: The arrival of NASA astronaut Jessica Meir, Russian cosmonaut Oleg Skripochka and the first United Arab Emirates (UAE) astronaut Hazza Al Mansouri on Friday (27 September) was followed by the Japanese HTV-8 space freighter the next day, bringing over four tons of supplies and fresh science (image credit: ESA).

- With nine people now on board, the Space Station is even busier and nosier than usual, including at mealtimes. ESA astronaut Luca Parmitano tweeted this image of the team gathered for a celebratory dinner in the Russian Zvezda module, the food preparation area of the Space Station. He captioned it: “Celebrating three birthdays in one week (me, and Nick Hague and Alexei Ovchinin), wearing the t-shirts of our ‘space band’: ‘Kryk Chayky’- ‘The cry of the seagull.’”

- The seagulls, like shared mealtimes, are one way the crew cope with the oddities of life in space. From isolation and disturbed day-night rhythms to the hums and buzzes of the Space Station, living in space can be stressful. Astronauts try to maintain a routine that includes social time to unwind and build camaraderie.

- This is especially important in a multicultural environment. A total of 239 people from 19 countries have visited the space home, and as of Luca’s current mission Beyond, there are 4 nationalities on board.

- Luca is preparing to take over command of the Space Station, when current commander cosmonaut Alexei Ovchinin, NASA astronaut Nick Hague and UAE astronaut Hazza Al Mansouri return to Earth in the early hours of 3 October.

- In the meantime, it is not all fun and band practice for the crew. They are hard at work on science experiments and, perhaps more importantly this week, station maintenance. Read more about the experiments and chores in the biweekly roundup.

• September 30, 2019: Three newcomers and two spacecraft make a full house in space. The population of the International Space Station rose to nine last week while European science focused on bone loss, time perception and routine maintenance. 8)

- ESA astronaut Luca Parmitano welcomed aboard NASA astronaut Jessica Meir, Russian cosmonaut Oleg Skripochka and the first United Arab Emirates (UAE) astronaut Hazza Al Mansouri. Following their arrival on the Soyuz spacecraft, Japan’s HTV-8 space freighter docked to the Station with over four tonnes of supplies and new science experiments.

- A total of 239 people from 19 countries have visited the space home, where living quarters are now even noisier than usual as humming fans and the creaking of the Station’s shell join with the sounds of nine busy astronauts on board.

Bone loss

- All astronauts lose up to 1% of their bone mass each month in space, a similar rate of decrease to that experienced by people with osteoporosis on Earth. This disease results in loss of calcium and a more brittle bone structure.

- Studying what happens during long spaceflights offers a good insight into the process of osteoporosis and helps develop methods to combat it. The Early Detection of Osteoporosis in Space experiment looks at changes in bone structure before and after flight.

- Cosmonaut Aleksander Skvortsov is 53 years old and this is his third long stay on the Space Station. Halfway through his mission, he took blood samples for scientists to study how his skeleton is coping when its supporting function is cancelled out by microgravity.

ISSImagery2019_Auto45

Figure 11: NutrISS experiment. Getting meals right is an aspect of mission design, so the Nutrition Monitoring for the International Space Station (NutrISS) experiment is tracking Luca’s energy balance. - Using the EveryWear astronaut app and a ‘bioelectric impedance’ device to measure his bodily conductivity, Luca has been tracking his fat to mass ratio. The science teams on Earth hope that a carefully-tailored high-protein diet could limit the typical microgravity-driven loss of bone and muscle. EveryWear is an iPad-based application that collects physiology and medical data from astronauts on the International Space Station. It is connected to wearable biomedical sensors that record exercise, heart rate and sleep quality. Its main use is as a food diary. The astronaut simply scans the barcode of the food with the built-in tablet camera, classify it as breakfast, lunch dinner or snack, and add how water was consumed (image credit: ESA/NASA)

- Researchers behind the Nutrition Monitoring for the International Space Station (NutrISS) experiment believe that a carefully-tailored high-protein diet could limit microgravity-induced bone and muscle loss in astronauts.

- For the third time during his mission Beyond, Luca tracked his fat to mass ratio with a bio-impedance device and logged the meals consumed during the week using the EveryWear astronaut app. Expert nutritionists use the data to monitor and provide advice to keep him healthy.

• September 30, 2019: Scientific studies recently conducted aboard the International Space Station included testing algorithms to control free-flying satellites, evaluating the flow of amyloids in microgravity and more. On Sept. 25, the Expedition 60 crew welcomed members of Expedition 61 including NASA astronaut Jessica Meir and Russian cosmonaut Oleg Skripochka, along with a ROSCOSMOS spaceflight participant from the United Arab Emirates, Hazzaa Ali Almansoori. In addition, the Japan Aerospace Exploration Agency (JAXA) H-IIB rocket launched Sept. 24 for a four-day trip to bring supplies and science investigations to the station. 9)

- The space station provides a platform for long-duration research on the human body in microgravity and for testing technologies for traveling farther into deep space, which supports Artemis, NASA’s plans to go forward to the Moon and on to Mars.

ISSImagery2019_Auto44

Figure 12: NASA astronaut Nick Hague works on the Ring Sheared Drop investigation in the Microgravity Sciences Glovebox as NASA astronaut Christina Koch observes. Ring Sheared Drop examines the formation and flow of amyloids in microgravity (image credit: NASA)

Figure 13: Space to Ground: New Arrivals: 09/27/2019 (video credit: NASA Johnson)

• September 29, 2019: This photograph (Figure 14), taken by an astronaut on the International Space Station, offers a detailed view of parallel, linear dunes in Australia’s Simpson Desert. The dunes have formed as a result of wind erosion and sand deposition taking place over thousands of years. Some of the dunes stretch more than 100 km in length. 10)

- Lake Eyre—also known as Kati Thanda–Lake Eyre—is Australia’s largest salt lake. Some of it is visible in the right corner of the image, along with other playa lakes that stand out from the rippled landscape. Playas are flat, shallow lake beds that occur in arid and semi-arid climate zones. The dry lake beds are lighter in color due to a thin layer of salt deposits that reflect more light.

- The Kati Thanda-Lake Eyre basin spans parts of South Australia, Northern Territory, Queensland, and New South Wales. It is part of one of the world’s largest internally draining river systems, which means that the rivers in the photo do not drain into the ocean. In this photo, Lake Eyre has a higher volume of water than usual due to flooding that occurred earlier in the year.

ISSImagery2019_Auto43

Figure 14: The astronaut photograph ISS059-E-67912 was acquired on 19 May 2019, with a Nikon D5 digital camera using a 210 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, caption by Laura Phoebus)

• September 27, 2019: Luca was launched to the International Space Station for his second mission, Beyond, on 20 July 2019. He will spend six months living and working on the orbital outpost where he will support more than 50 European experiments and more than 200 international experiments in space. 11)

ISSImagery2019_Auto42

Figure 15: ESA astronaut Luca Parmitano and the rest of the International Space Station crew celebrated European Day of Languages (26 September) with the following message: "Six friends, three different languages: and all speak at least two of those. Today, we celebrate the ability to speak other languages and the European linguistic diversity, a rich heritage of our history." (image credit: ESA/NASA)

• September 25, 2019: ESA astronaut Luca Parmitano is set to become the third European and first Italian commander of the International Space Station, following an official change of command ceremony on Wednesday 2 October 2019. 12)

- He will take over from departing Russian cosmonaut Alexei Ovchinin. This marks the start of Expedition 61 and the second part of Luca’s second space mission known as Beyond.

- Live coverage of the change of command ceremony is scheduled for 15:20-15:40 CEST (13:20-13:40 GMT) 2 October and will be shown on NASA TV.

Europe in command

- The full title of Luca’s new role is International Space Station crew commander. While overall command of the Station lies with ground-based flight directors unless there is an emergency on board, the role of crew commander is vital to mission success.

- ESA astronaut and current head of ESA’s Astronaut Center (EAC) in Cologne, Germany, Frank De Winne was the first European appointed to the commanding role. This was during his OasISS mission in 2009. He was followed by ESA astronaut Alexander Gerst in 2018, who held the role during the second part of his Horizons mission.

- Frank says the International Space Station crew commander holds responsibility for crew morale and wellbeing. It is up to them to ensure crew members are able to perform the tasks required of them during their time in space.

- He is confident Luca will do an excellent job and believes the appointment of two European commanders in quick succession says a lot about Europe’s position as a trusted partner.

- “People can rely on us, and they do rely on us,” Frank explains. “Not only in terms of the hardware that we provide to the Space Station and now the service module for Orion, but also in the area of crew operations.

- “I think that is a very good result of the investment European member states have made.”

- Luca has also expressed his pride in the appointment, saying “I am honored that the Space Station program chose me for this role, and at the same time I am humbled by the task.

- “Being the commander of the most trained and proficient people on and off Earth can be daunting. I see myself as a facilitator, my goal will be to put everybody in the condition to perform to the best of their capability. Ultimately, though, I am responsible for the safety of the crew and the Station, and for overall mission success.”

ISSImagery2019_Auto41

Figure 16: Official portrait of ESA astronaut Luca Parmitano for his second mission to the International Space Station, called Beyond (image credit: ESA–A. Conigli)

- Luca takes over command at a particularly busy time for Station operations.

- A number of spacewalks are scheduled for November to extend the life of the Alpha Magnetic Spectrometer (AMS-02) – a state-of-the-art cosmic-ray detector designed to examine fundamental properties of dark matter, antimatter and missing matter and the origin of the Universe.

- Later in November, Luca is also expected to remotely control a robot on Earth to collect geological samples under the direction of scientists as part of an experiment called Analog-1.

- Luca is currently scheduled to remain on Station as Space Station commander until February 2020 when he will return to Earth with Alexander and Christina.

• September 25, 2019: An astronaut took this photograph on a clear spring 2019 day while looking north toward mainland Alaska. At the time, the International Space Station (ISS) was located approximately 430 kilometers (270 miles) southeast of the Alaska Peninsula. 13)

- Clear views of Alaska from the ISS are uncommon due to frequent cloud cover and the limits of the ISS orbit trajectory. The spacecraft flies between 51.6° North and South, so regions near the Arctic Circle (66.5°N), are difficult to photograph and often beyond an astronaut’s field of view.

- This oblique photograph offers a wide view toward the Seward Peninsula. The Bering Strait is visible with the easternmost reaches of Russia on the other side of the narrow waterway. Pack ice is floating through the strait toward the Bering Sea. The snow cover in this spring season photo highlights braided rivers, lakes, and the Ahklun Mountains.

- Astronauts on some space shuttle missions had more direct views of Alaska for photography, such as this photo from mission STS042 of 1992 that offers a different perspective on the Ahklun Mountains.

ISSImagery2019_Auto40

Figure 17: The astronaut photograph ISS059-E-36413 was acquired on April 27, 2019, with a Nikon D5 digital camera using a 95 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, caption by Andrea Meado)

• September 16, 2019: There is plenty of science on the boil at the International Space Station – including an experiment literally designed to expand our knowledge of the boiling process. 14)

ISSImagery2019_Auto3F

Figure 18: ESA astronaut Luca Parmitano shares a light dinner with his Expedition 60 crewmates on the International Space Station. Luca posted this image to social media during his Beyond mission with the caption: Among friends for a light dinner ... so light that everything flies (image credit: ESA7NASA)

Figure 19: ESA astronaut Luca Parmitano is this year’s ambassador of the European Astro Pi Challenge. In this video, he welcomes students to the challenge and gives an overview of the project (video credit: ESA)

- The European Astro Pi Challenge is a school project run by ESA in collaboration with the Raspberry Pi Foundation. It gives young people the opportunity to write code that runs on mini-computers on board the International Space Station. This year, Luca is the European Astro Pi challenge ambassador and on 12 September he launched the challenge with a video outlining the details and calling for submissions.

• September 15, 2019: This circular cloud formation caught the eye of an astronaut while orbiting over the South Pacific Ocean. Traveling near the southernmost reaches of its orbit, the International Space Station (ISS) was more than 3,200 km east of New Zealand and more than 4,400 km west of South America. 15)

- The striking colors within the cloud formation are a result of the local sunrise. When the Sun is at a low angle (relative to the atmosphere and ISS), sunlight passes through a thicker slice of the atmosphere. This can enhance the red end of the visible color spectrum, leading to the pink hues visible at the center of the image.

- When photos are taken close to the day-night line (also known as the terminator), the sunlight can cast shadows that accentuate contrasting cloud heights and make the sense of circular motion more distinct to the eye. This photo was taken while the astronaut was looking back toward the night hemisphere, so the clouds become less defined as they fade into the terminator.

- The astronaut who took this photograph sent a message from the ISS to ask if this specific cloud formation had been a named tropical cyclone. However, the weather system was short-lived.

ISSImagery2019_Auto3E

Figure 20: Low Sun angles enhance certain wavelengths of light, painting the atmosphere over a distant patch of ocean. This astronaut photograph ISS059-E-11742 was acquired on April 4, 2019, with a Nikon D5 digital camera using a 50 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, Caption by Sara Schmidt)

• September 11, 2019: This photograph, taken by an astronaut onboard the International Space Station, captures a short section of coastline on the west coast of Baja California, Mexico. Small developed areas are interspersed among sections of farmland in a valley bounded by minor mountain ranges. The city of Ensenada, a major port and tourist destination, lies just beyond the bottom left corner of the image. 16)

- The fishing industry is an integral part of the economy for this region. Pacific Bluefin tuna is one of the important species locally. A series of fish farming pens also appear along the east side of the peninsula. (The inset image offers a zoomed look at one of the aquaculture facilities.)

- Punta Banda Peninsula reaches out to form the southern limit of Todos Santos Bay (All Saints Bay). The temperate conditions that make this region productive for fishing also provide attractive conditions for Pacific gray whales as they migrate south from their feeding grounds to give birth in the protected bays and estuaries of Baja California.

- The lagoon (image center) and the bay coastline have been affected by erosion in recent years due to a combination of natural processes, a reduced sediment supply to the bay and, increasingly, urban growth and increased tourism.

ISSImagery2019_Auto3D

Figure 21: The astronaut photograph ISS059-E-36214 was acquired on April 27, 2019, with a Nikon D5 digital camera using an 800 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, caption by Laura Phoebus)

• September 4, 2019: Visit Seattle and you might hear a local declare “the mountain is out!” The phrase refers to Mount Rainier, situated 60 miles (95 km) south-southeast of the city. On a clear day, the majestic volcano dominates the horizon. It is an iconic backdrop of the Puget Sound region. 17)

- But the Pacific Northwest is also known for its cloudy days and rain. That’s why people in the region notice when the “mountain is out.” An astronaut noticed, too, snapping this photograph from aboard the International Space Station (ISS) on a clear day in July 2018.

- Mount Rainier is the tallest mountain in the Cascade Range, standing 14,410 feet (4,392 m) above sea level. Viewed from the side, its highest point might appear to be Point Success, Liberty Gap, or the crater rim. The nadir view, however, gives a clear view of Columbia Crest—a small mound of snow north of the crater rim, and the mountain’s true highest point.

- The nadir perspective also provides a clear view of the volcano’s crater. Black rocks ring the snow- and ice-filled crater, which measures more than 300 m across. This clearly defined crater is ringed by a second, less distinct crater.

- With 25 named glaciers flowing down its flanks and patches of perennial snow, the mountain stays white year-round. In some areas, ice is forced around huge, long walls of rock known as “cleavers”; one of the most prominent is Gibraltar Rock. Scientists have documented the gradual loss of the mountain’s perennial ice, which lost almost 2 percent of its area between 2009 and 2015.

- Not all changes are gradual. Just two days before this photograph was acquired, an icefall on Ingraham Glacier sent blocks of ice and rubble careening down 300 meters along a popular climbing route. The event, large enough to be detected on seismographs, occurred at night and no climbers were injured.

- The modern mountain is the result of about half a million years of growth amid periods of volcanic activity. Cascade Range volcanoes, including Mount Rainier, are the result of oceanic crust sinking below North America, causing the release of water and melted rock. During the past 2600 years the mountain has erupted about a dozen times, the largest of which occurred about 2200 years ago. Small summit explosions were last reported in 1894, but have not been confirmed.

ISSImagery2019_Auto3C

Figure 22: The astronaut photograph ISS056-E-85160 was acquired on July 8, 2018, with a Nikon D5 digital camera using an 160 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 56 crew (image credit: NASA Earth Observatory, story by Kathryn Hansen)

• September 2, 2019: Hurricane Dorian Seen From Aboard the Space Station. 18)

ISSImagery2019_Auto3B

Figure 23: NASA astronaut Christian Koch snapped this image of Hurricane Dorian as the International Space Station during a flyover on Monday, September 2, 2019 (image credit: NASA)

• September 1, 2019: An astronaut aboard the International Space Station (ISS) focused a long lens on the Zambezi River where it flows over Africa’s dramatic Victoria Falls. The falls were given their modern name in 1855 by the European explorer David Livingstone, who named them after Queen Victoria. Long before colonial times, however, the falls were called Mosi-oa-Thunya—Tswana for “The Smoke that Thunders.” 19)

- In this oblique, south-looking photograph, the falls appear as a thin white line near the image center. The river valley changes dramatically at the falls. The partial reflection of the Sun off the water (sunglint) shows that the river above the falls (right half of the image) is a sheet of water up to 2 kilometers (1.25 miles) wide. In the left half of the image, the river appears as a narrow line. This is where the river flows in a zigzagging canyon that it has cut more than 100 meters down into the rock. The canyon walls cast dark shadows that makes the canyon look more prominent from space compared to the wide, placid waters above the falls.

- Although not the highest or longest falls in the world, Victoria Falls is the world’s largest sheet of falling water. Several prior positions of the falls also appear in this space view. A photo shot during the space shuttle years shows the line of spray produced by the falls.

- The Zambezi River forms the international boundary between Zambia and Zimbabwe. The tourist towns of Livingstone and Victoria Falls stand out due to their urban grid structures and road networks.

ISSImagery2019_Auto3A

Figure 24: The astronaut photograph ISS056-E-100602 was acquired on July 30, 2018, with a Nikon D5 digital camera using an 800 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 56 crew (image credit: NASA Earth Observatory, caption by M. Justin Wilkinson)

• August 27, 2019: An astronaut onboard the International Space Station took this photo of sunglint reflecting off Turkmenbashi Gulf, an inlet on the southeastern edge of the Caspian Sea. The complex glint patterns are due to waves, winds, the presence of oils or surfactants, and the presence of boats and drilling platforms—all of which alter the roughness of the water surface. 20)

- Just beyond the narrow passage into Turkmenbashi Gulf, dozens of offshore drilling operations dot the sea surface. The Caspian Sea is a large oil-producing region, and these drilling platforms are located over a natural gas field. Though these platforms are barely visible from space, the passing waves and sunglint create a traceable line, making the structures easier to locate from above. Wakes from boats also create linear streaks as they head to and from towns and petroleum storage.

- A bright, hook-shaped streak appears in the sunglint near the drilling platforms. This could possibly be an oil slick or bilge water discharge from a ship. The streak has been reworked by waves, so the source cannot be determined from this photo.

ISSImagery2019_Auto39

Figure 25: The astronaut photograph ISS059-E-99045 was acquired on June 10, 2019, with a Nikon D5 digital camera using a 140 mm lens and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 59 crew (image credit: NASA Earth Observatory, caption by Andrea Meado)