Minimize ISS: SpaceX CRS-22

SpaceX CRS-22 Mission

Launch    Payloads    Mission Status    References

NASA commercial cargo provider SpaceX is targeting 1:29 p.m. EDT, Thursday, June 3, 2021 to launch its 22nd commercial resupply services mission to the International Space Station. Liftoff will be from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. SpaceX’s Dragon spacecraft will deliver new solar arrays to power future work aboard the orbiting laboratory, along with new science investigations, supplies, and equipment for the international crew. Live coverage will air on NASA Television, the NASA app and the agency’s website, with prelaunch events starting Wednesday, June 2. 1)

Dragon’s pressurized capsule will carry a variety of research, including an experiment that could help develop better pharmaceuticals and therapies for treating kidney disease on Earth, a study of cotton root systems that could identify varieties of plants that require less water and pesticides. The research also will include two model organism investigations: One will study bobtail squid to examine the effects of spaceflight on interactions between beneficial microbes and their animal hosts. The other will examine tardigrades’ adaptation to conditions in low-Earth orbit, which could advance understanding of the stress factors affecting humans in space.

The mission will include technology demonstrations, including a portable ultrasound device. Additionally, astronauts will test the effectiveness of remotely operating robotic arms and space vehicles using virtual reality and haptics interfaces.

Dragon’s unpressurized trunk section will deliver the first two of six new roll-out solar arrays based on a design tested on the space station in 2017. A robotic arm will extract them and astronauts will install them during a series of spacewalks this summer.

About 12 minutes after launch, Dragon will separate from the Falcon 9 rocket’s second stage and begin a carefully choreographed series of thruster firings to reach the space station. Arrival to the space station is planned for Saturday, June 5. Dragon will autonomously dock to the space-facing port on the station’s Harmony module, with Expedition 65 Flight Engineers Shane Kimbrough and Megan McArthur of NASA monitoring operations.

The spacecraft is expected to spend more than a month attached to the space station before it splashes down in the Atlantic Ocean, returning with research and return cargo.


Launch: The SpaceX CRS-22 (Commercial Resupply Services) mission was launched on 03 June 2021 at 17:29 UTC (1:29 EDT) on a Falcon 9 Block 5 vehicle from LC39A at KSC in Florida. - The Dragon separated from the rocket’s upper stage 12 minutes after liftoff. 2)

Orbit: Near circular orbit, altitude of ~ 400 km, inclination = 51.6º, period of~92 minutes.

CRS-22_Auto7

Figure 1: he SpaceX Falcon 9 rocket carrying the Dragon cargo capsule lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on June 3, 2021, on the company’s 22nd Commercial Resupply Services mission for the agency to the International Space Station(photo credit: NASA/Kim Shiflett) 3)

This launch was the first flight of a new booster, which made a successful droneship landing in the Atlantic Ocean. This was the first SpaceX launch to use a new booster since November 2020. “We’re actually surprised when we get to a mission like today’s where we’re flying a new booster,” said Sarah Walker, director of Dragon mission management at SpaceX, at the preflight briefing.

The Dragon spacecraft will arrive at the space station and autonomously dock to the space-facing port of the Harmony module on the International Space Station at approximately 5 a.m June 5. Coverage of the rendezvous and docking will begin at 3:30 a.m. NASA astronauts Shane Kimbrough and Megan McArthur will monitor the arrival of the spacecraft, which will stay aboard the orbiting laboratory for about a month before splashing down and returning critical science and hardware to teams on Earth.

The largest item the Dragon is transporting to the station is a pair of new solar arrays called the ISS Roll-out Solar Array (iROSA), developed by Redwire for ISS prime contractor Boeing. The arrays are stored in the Dragon’s trunk rolled up, and will be attached to the station’s truss and rolled out. Astronauts Shane Kimbrough and Thomas Pesquet are currently scheduled to conduct spacewalks on June 16 and 20 to install those arrays.

The arrays are the first two of six that will be installed on the station, overlaying part of the existing arrays. The higher efficiency of the new arrays means that, even by shadowing the existing arrays, they will still generate more power for the station.

The new solar arrays bring us back to a power generation that was the same as we had when we launched the older solar arrays,” said Joel Montalbano, NASA ISS program manager, during a June 2 briefing. “It allows us to continue the science and research programs we have on board.” He said that the new arrays will also provide enough power to support a commercial module being developed by Axiom Space that will be added to the station as soon as 2024.

CRS-22_Auto6

Figure 2: A SpaceX cargo Dragon spacecraft after separation from the upper stage of its Falcon 9 rocket June 3. Visible in the trunk section of the Dragon are two solar arrays, in their rolled-up configuration, that will be installed on the space station (image credit: NASA TV)




Payloads of the SpaceX CRS-22 Mission

SpaceX’s 22nd contracted cargo resupply mission(CRS)to the International Space Station for NASA will deliver more than7,300pounds of science and research, crew supplies and vehicle hardware to the orbital laboratory and its crew. 4) 5)

Research Highlights

Hundreds of experiments are being conducted on the International Space Station in the areas of biology and biotechnology, physical sciences, and Earth and space science. This research helps us better understand how to prepare for future long-duration missions to the Moon and Mars, supports a growing space economy, and leads to developments that improve life on Earth. The SpaceX cargo spacecraft will deliver dozens of investigations to the International Space Station, including:

• Research that could help develop cotton varieties that require less water and pesticides

• An experiment looking at tardigrade survival in space, which could advance understanding of the stress factors affecting humans in microgravity

• A portable ultrasound device

• A new way of providing tactile and visual feedback to astronauts during robotic operations

• A look at interactions between beneficial microbes and their animal hosts

These and other cutting-edge investigations join the hundreds of ongoing experiments aboard the orbiting laboratory.

Figure 3: Science launching on SpaceX 22nd Cargo Resupply mission to the ISS (video credit: NASA)

CRS-22_Auto5

Figure 4: Cargo of the SpaceX CRS-22 mission (image credit: NASA)


Launch of Hardware

ISS Roll-Out Solar Arrays (IROSA) – Solar arrays launching for installation during the summer 2021 spacewalks to upgrade power capabilities on-orbit

Catalytic Reactor - Legacy unit launching to provide critical sparing support for the water production capability for the environmental control and life support system (ECLSS)

Commercial Crew Vehicle Emergency Breathing Air Assembly (CEBAA) Regulator Manifold Assembly (RMA) - Completing the first setup for emergency air supply capability, this integrated system supports as many as five crew members for up to one hour during an ISS emergency ammonia leak

Zarya control module Kurs electronics unit - Critical hardware for cosmonaut remote-control docking of Russian spacecraft is launching to support planned maintenance activity during 2021

Portable Water Dispense (PWD) Filter - Major filter assembly used to remove iodine from water consumed by the crew during nominal operations

Commercial off-the-shelf (COTS) Air Tanks - Critical disposable air tanks to support gas resupply for routine cabin repress activities on-orbit

Iceberg - Critical cold stowage capability to support expanded payload operations


Return of Hardware

Catalytic Reactor Developmental Test Objective (DTO) - Developmental environmental control and life support system (ECLSS) unit returning for testing, teardown, and evaluation (TT&E) to determine the cause of failure and subsequent re-flight

Urine Processing Assembly (UPA) Distillation Assembly - Critical ECLSS orbital replacement unit used for urine distillation, processing, and future use returning for TT&E and refurbishment to support future spares demand

Sabatier Main Controller - Major Sabatier system hardware used in conjunction with the Oxygen Generation System (OGS) for water production needs on-orbit

Rodent Research Habitats (AEM-X) - Habitats used during Rodent Research missions returning for refurbishment to support future missions in early 2022

Nitrogen/Oxygen Recharge System (NORS) Recharge Tank Assembly (RTA) - Empty gas tanks returning for reuse to support high-pressure gas operations and activities on-orbit


Passenger CubeSat payloads (ELaNa-36) on the SpaceX CRS-22 mission

• Alpha, a 1U CubeSat technology demonstration mission of Cornell University, Ithaca, New York (deployment of a 1 x 1 m light sail with four tiny “chipsats” called Sprites attached)

• ARKSAT-1, a 1U CubeSat technology demonstration mission of the University of Arkansas, Fayettville, Arkansas (to demonstrate LEO-to-Earth atmospheric composition measurements using an on-board xenon flash bulb as the calibrated source for ground tracking)

• BeaverCube, a 3U CubeSat technology demonstration mission of MIT (Massachusetts Institute of Technology), Cambridge, MA

• CaNOP (Canopy Near-IR Observing Project), a 3U CubeSat of Carthage University, Kenosha, Wisconsin. The CaNOP science mission is to obtain medium-resolution images of global forest canopies with spectral resolution of 10 nm across the visible and near-infra-red.

• CAPSat (Cooling, Annealing, Pointing Satellite), a 3U CubeSat a technology demonstration mission of University of Illinois at Urbana–Champaign. Objective: CubeSat navigation and control.

• EagleSat-2, a 3U CubeSat mission of Embry–Riddle Aeronautical University, Daytona Beach, Florida. Objective: scientific investigation focused on detecting cosmic ray particles and studying the effects of solar radiation on various types of random access memory in a memory degradation experiment.

• PR_CuNaR2 (Puerto Rico CubeSat NanoRocks-2), a 3U CubeSat scientific investigation of the International American University of Puerto Rico - Bayamón Campus, Bayamón, Puerto Rico. The objective is to increase understanding of the outcomes of relevant collisions among millimeter-sized particles, or “pebbles”, in a protoplanetary disk.

• RamSat, a 2U CubeSat education mission of Oak Ridge Public Schools (Robertsville Middle School), Oak Ridge, Tennessee.

• Stratus, a 3U CubeSat science investigation mission of Michigan Technological University, Houghton, Michigan. The objective is of measuring cloud fraction, cloud top height, and cloud top wind with performance comparable to the best data obtained from NASA’s flagship Earth-observing spacecraft.

• SPACE HAUC (Science Program Around Communications Engineering with High Achieving Undergraduate Cadres ) , a 3U CubeSat (4 kg) of the University of Massachusetts Lowell, Lowell, Massachusetts. SPACE HAUC is an undergraduate student CubeSat project with the primary goal of providing multi-disciplinary undergraduate students with hands-on training in designing and building space-flight missions. SPACE HAUC's secondary mission is a technical demonstration of a high data -rate (up to 100 Mbit/s) X-band phased array system with adaptive beam steering capabilities.

• SOAR (Satellite for Orbital Aerodynamics Research), a 3U CubeSat technology demonstration mission of Manchester University, UK. The objective is to investigate the interaction between different materials and the atmospheric flow regime in very low Earth orbits (VLEO). Improving knowledge of the gas–surface interactions at these altitudes and identification of novel materials that can minimize drag or improve aerodynamic control are important for the design of future spacecraft that can operate in lower altitude orbits.




Mission status

• June 8, 2021: The Expedition 65 crew members are helping researchers today understand how living in space affects the human body. Two astronauts are also getting ready for a pair of spacewalks while the SpaceX Cargo Dragon continues being unpacked at the International Space Station. 6)

- NASA Flight Engineer Mark Vande Hei joined Commander Akihiko Hoshide of the Japan Aerospace Exploration Agency (JAXA) for vein scans using electrodes and the Ultrasound-2 device on Tuesday. The duo took turns scanning each other’s heart, neck, shoulder and leg veins for the Vascular Echo study that investigates cardiovascular health in space.

- Vande Hei later assisted NASA Flight Engineer Megan McArthur unloading a variety of cargo delivered aboard the SpaceX Cargo Dragon. The duo started the day with the rest of their crewmates, including astronauts Shane Kimbrough and Thomas Pesquet and cosmonauts Oleg Novitskiy and Pyotr Dubrov, reviewing safety procedures necessary while Dragon is docked at the station.

- Kimbrough and Pesquet continue gearing up for two spacewalks planned for June 16 and 20 to install a new pair of solar arrays recently delivered in the Cargo Dragon’s unpressurized trunk. The duo first checked out spacesuit helmet cameras and lights then reviewed their spacewalk procedures using specialized 3-D software today.

- Over in the orbiting lab’s Russian segment, Roscosmos Flight Engineers Oleg Novitskiy and Pyotr Dubrov explored ways to improve exercise in space to maintain crew health. The duo later completed reconfiguring the Poisk module where last week’s seven-hour and 19-minute spacewalk was staged.

CRS-22_Auto4

Figure 5: Expedition 65 astronauts (clockwise from left) Shane Kimbrough, Megan McArthur, Mark Vande Hei and Akihiko Hoshide are pictured inside the Harmony module (image credit: NASA)

• June 8, 2021: ESA astronaut Thomas Pesquet and NASA astronaut Megan MacArthur run sessions on the Pilote experiment proposed by France’s space agency CNES in the European Columbus module of the International Space Station. 7)

- Continuing French neuroscience experiments started on the Russian space station Mir, the Pilote experiment evaluates a new way of providing tactile and visual feedback to astronauts when operating robots. Using a virtual reality headset and a haptic joystick can recreate the feeling of pressure and touch when tele-operating a robotic arm.

CRS-22_Auto3

Figure 6: The results from Pilote will improve the work space on the International Space Station and future spacecraft for lunar and martian missions, where astronauts in orbit could operate rovers on the surface (image credit: ESA/NASA)

• June 7, 2021: The SpaceX Cargo Dragon resupply ship is open for business at the International Space Station following its automated docking early Saturday. Now, the Expedition 65 crew turns its attention to a pair of U.S. spacewalks to upgrade the orbiting lab’s power system. 8)

- Flight Engineer Megan McArthur and Commander Akihiko Hoshide worked throughout Monday unpacking and activating science experiments delivered Saturday aboard the SpaceX Cargo Dragon. The U.S. space freighter launched from Kennedy Space Center on Thursday carrying over 7,300 pounds of new science, supplies and solar arrays to replenish the orbiting lab.

- McArthur started the day transferring research hardware from Dragon to begin work for the Kidney Cells-02 study that seeks to improve treatments for kidney stones and osteoporosis. She followed that up configuring MERLIN and POLAR science freezers containing biological samples inside Dragon.

- Hoshide removed mice launched aboard Dragon and placed them inside a habitat in the Kibo laboratory module to study space-caused aging-like symptoms such as bone loss and muscle atrophy. NASA Flight Engineers Shane Kimbrough and Mark Vande Hei assisted the duo with the cargo transfers throughout Monday.

- Kimbrough and Flight Engineer Thomas Pesquet partnered together Monday afternoon readying the U.S. Quest airlock and their U.S. spacesuits for two spacewalks set for June 16 and 20. The experienced spacewalkers, who had two spacewalks together in 2017 during Expedition 50, will work both days to install the first two of six new solar arrays on the space station’s integrated truss structure. Robotics controllers will soon command the Canadarm2 robotic arm to extract the new pair of solar arrays from Dragon’s trunk and stage it in time for the installation spacewalks.

- Cosmonauts Oleg Novitskiy and Pyotr Dubrov spent the morning testing satellite navigation gear, studying space exercise and replacing orbital plumbing gear. The duo then wrapped up stowing and inventorying the tools they used during a seven-hour and 19 minute spacewalk on June 2.

CRS-22_Auto2

Figure 7: Astronauts Shane Kimbrough (from left) and Thomas Pesquet pose for a portrait while working on U.S. spacesuits (image credit: NASA)

• June 5, 2021: While the International Space Station was traveling more than 250 miles (400 km) over the South Pacific ocean, a SpaceX Dragon cargo spacecraft autonomously docked to the space-facing side of the orbiting laboratory’s Harmony module at 5:09 a.m. EDT, Saturday, June 5. NASA astronauts Shane Kimbrough and Megan McArthur were monitoring docking operations for Dragon. 9)

- This 22nd contracted resupply mission for SpaceX delivers the new ISS Roll-out Solar Arrays (iROSA) to the space station in the trunk of the Dragon spacecraft. The robotic Canadarm2 will extract the arrays and astronauts will install them during spacewalks planned for June 16 and 20.

CRS-22_Auto1

Figure 8: ISS configuration. Five spaceships are parked at the space station including the SpaceX Crew Dragon and Cargo Dragon vehicles, Northrop Grumman’s Cygnus-15 resupply ship, all three from the United States, and Russia’s Progress 77 resupply ship and Soyuz MS-18 crew ship (image credit: NASA)

Among the science experiments Dragon is delivering to the space station are (Ref. 9):

- Symbiotic squid and microbes: The Understanding of Microgravity on Animal-Microbe Interactions (UMAMI) study uses bobtail squid and bacteria to examine the effects of spaceflight on interactions between beneficial microbes and their animal hosts. This type of relationship is known as symbiosis. Beneficial microbes play a significant role in the normal development of animal tissues and in maintaining human health, but gravity’s role in shaping these interactions is not well understood. This experiment could support the development of measures to preserve astronaut health and identify ways to protect and enhance these relationships for applications on Earth.

- Producing tougher cotton: Cotton is used in many products, but its production uses significant amounts of water and agricultural chemicals. The Targeting Improved Cotton Through On-orbit Cultivation. (TICTOC) study focuses on improving cotton’s resilience, water-use, and carbon storage. On Earth, root growth depends upon gravity. TICTOC could help define which environmental factors and genes control root development in microgravity. Scientists could use what they learn to develop cotton varieties that require less water and pesticide use.

- Water bears take on space: Tardigrades, also known as water bears for their appearance when viewed under a microscope, are creatures that can tolerate extreme environments. The Cell Science-04 experiment aims to identify the genes involved in water bear adaptation and survival in these high-stress environments. The results could advance scientists’ understanding of the stress factors that affect humans in space. 10)

CRS-22_Auto0

Figure 9: The tardigrade, Hypsibius exemplaris, a model for understanding how organisms survive in extreme environments. Tardigrades will be cultured aboard the International Space Station over multiple generations (photo credit: Tagide deCarvalho)

- On-the-spot ultrasound: The handheld, commercial Butterfly IQ Ultrasound device could provide critical medical capabilities to crews on long-term spaceflights where immediate ground support is not an option. This study will demonstrate the use of an ultrasound unit alongside a mobile computing device in microgravity. Its results have potential applications for medical care in remote and isolated settings on Earth.

- Developing better robot drivers: An ESA (European Space Agency) investigation, Pilote, test the effectiveness of remotely operating robotic arms and space vehicles using virtual reality and haptic interfaces. Pilote studies existing and new technologies in microgravity by comparing those recently developed for teleoperation to those used to pilot the Canadarm2 and Soyuz spacecraft. The study also compares astronaut performance in using the interfaces on the ground and during spaceflight. Results could help optimize workstations on the space station and future space vehicles for missions to the Moon and Mars.

- Bonus power: New solar panels headed to station are made up of compact sections that roll open like a long rug. The ISS Roll-out Solar Arrays (iROSA) are based on a previous demonstration of roll-out panels performed on station. They are expected to provide an increase in energy available for research and station activities. NASA plans a total of six new arrays to augment the station’s power supply with the first pair launching on this flight. The Expedition 65 crew is scheduled to begin preparations for spacewalks to supplement the station’s existing rigid panels this summer. The same solar array technology is planned to power NASA’s Gateway in lunar orbit.

- These are just a few of the hundreds of investigations currently being conducted aboard the orbiting laboratory in the areas of biology and biotechnology, physical sciences, and Earth and space science. Advances in these areas will help keep astronauts healthy during long-duration space travel and demonstrate technologies for future human and robotic exploration beyond low-Earth orbit to the Moon and Mars through Artemis.



1) Kathryn Hambleton, Stephanie Schierholz, Megan Cruz, Leah Cashier, ”NASA Sets Coverage, Invites Public to Virtually Join Next Cargo Launch,” NASA Press Release M21-067, 26 May 2021, URL: https://www.nasa.gov/press-release/nasa-sets-coverage-invites-public-to-virtually-join-next-cargo-launch

2) Jeff Foust, ”Falcon 9 launches cargo Dragon mission to ISS,” SpaceNews, 03 June 2021, URL: https://spacenews.com/falcon-9-launches-cargo-dragon-mission-to-iss/

3) Danielle Sempsrott, ”SpaceX’s 22nd Cargo Resupply Mission Underway as Dragon Journeys to Station,” NASA, SpaceX, 3 June 2021, URL: https://blogs.nasa.gov/spacex/2021/06/03/
spacexs-22nd-cargo-resupply-mission-underway-as-dragon-journeys-to-station/

4) Brian Dunbar, ”SpaceX CRS-22Mission Overview,” NASA, 28 May 2021, URL: https://www.nasa.gov/content/spacex-22-mission-overview

5) Melissa Gaskill, ”SpaceX’s 22nd Commercial Resupply Mission to Space Station Launches Water Bears, Squid, Solar Panels,” NASA Space Station Research, 20 May 2021, URL: https://www.nasa.gov/mission_pages/station/research/news/spacex-22-research-highlights

6) Mark Garcia, ”Human Research, Spacewalk Preps as Dragon Cargo Ops Continue,” NASA Space Station, 8 June 2021, URL: https://blogs.nasa.gov/spacestation/2021/
06/08/human-research-spacewalk-preps-as-dragon-cargo-ops-continue/

7) ”Pilotes,” ESA Science & Exploration, 08 June 2021, URL: https://www.esa.int/ESA_Multimedia/Images/2021/06/Pilotes

8) Mark Garcia, ”Astronauts Unload Dragon, Prep for Two U.S. Spacewalks,” NASA Space Station, 7 June 2021, URL: https://blogs.nasa.gov/spacestation/2021/06/
07/astronauts-unload-dragon-prep-for-two-u-s-spacewalks/

9) Norah Moran, ”SpaceX Cargo Craft Docks to Station,” NASA Space Station, 5 June 2021, URL: https://blogs.nasa.gov/spacestation/2021/06/05/spacex-cargo-craft-docks-to-station/

10) ”Small Packages with Big Benefits Aboard SpX-22,” NASA Science, June 22, 2021, URL: https://science.nasa.gov/science-news/biological-physical/small-packages-with-big-benefits-aboard-spx-22


The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: ”Observation of the Earth and Its Environment: Survey of Missions and Sensors” (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (herb.kramer@gmx.net).

Launch    Payloads    Mission Status    References    Back to top