Minimize ISS: Sample imagery - Part 2

ISS Utilization: Sample imagery taken by astronauts on and from the ISS (Part 2)

2017 Images   References

This file is a loose collection of some imagery samples taken by astronauts off and from the ISS (International Space Station). Astronauts who experience Earth from orbit often report feelings of awe and wonder, of being transformed by what they describe as the magic such a perspective brings. This phenomenon is called the "overview effect." The short descriptions in the following entries are presented in reverse order .

 

• May 22,2017: This photograph (Figure 1), taken by an astronaut aboard the International Space Station, shows the straight line of the Corinth Canal as it crosses a narrow isthmus between mainland Greece (right) and the Peloponnese Peninsula. The canal cuts through the narrowest part of the isthmus of Corinth. The towns of Corinth and Isthmia stand near the west and east ends (north is to the upper right). Near the center of the image, a highway crosses the canal and connects Athens to the Peloponnese. 1)

- Twenty-six hundred years ago, the ruler of Corinth—Periander—proposed digging a canal to connect the central Mediterranean Sea (via the Gulf of Corinth) to the Aegean Sea (via the Saronic Gulf). The goal was to save ships from the dangerous 700 km voyage around the ragged coastline of the peninsula. But the canal was still too ambitious a digging project and construction was not started.

- Not Julius Caesar, nor the Roman Emperors Caligula or Nero, were able to complete their plans for this ambitious project. The Venetians laid plans to dig the canal in the late 1600s but they never started it. In lieu of a water passage, boats have been hauled overland for centuries on a portage created by Periander. It runs roughly along the line of the modern canal.

- Construction of the modern Corinth Canal — which is 6.4 km — was started in 1882 and completed by 1893. The canal is narrow (only 21.3 meters), making many ships too wide for it. Landslides from the steep walls have occasionally blocked the canal, while channeled winds and tides also can make navigation difficult.

- An overview of the location of the Corinth Canal within Greece is provided in Figure 2.

ISSImagery2_AutoD

Figure 1: Astronaut photograph ISS051-E-12940 was acquired on April 13, 2017, with a Nikon D4 digital camera using an 1150 mm lens, and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 51 crew (image credit: NASA Earth Observatory, caption by M. Justin Wilkinson)

• July 14, 2014: This photo from an astronaut on the International Space Station shows much of the nation of Greece. The urban region of Athens is recognizable due to its size and light tone compared to the surrounding landscape; the smaller cities of Megara and Lamia also stand out. Dark-toned mountains with snow-covered peaks contrast with warmer, greener valleys where agriculture takes place. The intense blue of the Mediterranean Sea fades near the Sun's reflection point along the right side of the image, and numerous wind streaks in the lee of the islands become visible. 2)

- The Peloponnese—home in ancient times to the city-state of Sparta—is the great peninsula separated from the mainland by the narrow isthmus of Corinth. Several times over the centuries these narrows have acted as a defensive point against attack from the mainland. More recently in 1893, the narrows provided a point of connection when a ship canal was excavated between the gulfs to the west and to the east.

ISSImagery2_AutoC

Figure 2: Astronaut photograph ISS039-E-3505 was acquired on March 21, 2014, with a Nikon D3S digital camera using a 28 mm lens, and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by the Expedition 39 crew (image credit: NASA Earth Observatory, caption by M. Justin Wilkinson)

• May 15, 2017: The city of Burlington, Iowa, is situated on high bluffs next to the Mississippi River. The city thus has a commanding view of the wooded, finger-like creeks that lead down to the river; of the low floodplain and its farm fields; and the forested islands in the middle of the river. The Mississippi narrows significantly at Burlington, making a convenient location for two bridges. (For scale, the Interstate 34 bridge is 660 meters long.) A dam slows flow of the Mississippi River, but includes a lock to allow barge traffic to pass. 3)

- Major floods along the Mississippi tend to spill water onto the low floodplain, such that the view from Burlington—which stands about 40 meters above the river—would show the islands and floodplain entirely under water. The largest flood recorded at Burlington occurred in June 2008, when the river rose to 7.84 m, more than 3 m above flood stage.

ISSImagery2_AutoB

Figure 3: This astronaut photograph ISS050-E-51403 was acquired on February 19, 2017, with a Nikon D4 digital camera using an 1150 mm lens, and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 50 crew (image credit: NASA Earth Observatory, caption by Andi Hollier)

• May 12, 2017: Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA concluded their spacewalk at 1:21 p.m. EDT (17:21 GMT). During the spacewalk, which lasted just over four hours, the two astronauts successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. 4) 5)

- The astronauts also completed additional tasks to install a connector that will route data to the AMS-02 (Alpha Magnetic Spectrometer-02), repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the PMA-3 (Pressurized Mating Adapter-3). This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

- Spacewalkers have now spent a total of 1,247 hours and 55 minutes working outside the station during 200 spacewalks in support of assembly and maintenance of the orbiting laboratory. The first spacewalk in support of International Space Station assembly and maintenance was conducted on Dec. 7, 1998, by NASA astronauts Jerry Ross and Jim Newman during space shuttle Endeavour's STS-88 mission. Astronauts completed attaching and outfitting of the first two components of the station, the Russian Zarya module and the U.S. Unity module.

ISSImagery2_AutoA

Figure 4: Astronaut Jack Fischer is tethered to the outside of the International Space Station during the 200th spacewalk to install and repair gear with astronaut Peggy Whitson (image credit: NASA TV)

• May 10, 2017: An astronaut aboard the International Space Station captured this view of the southeastern portion of Monterrey, capital of the Mexican state of Nuevo Leon (Figure 5).

- Mount Silla—also referred to as Cerro De La Silla or Saddle Hill—is an iconic landscape feature of the region. When viewed from the west, the ridges and peaks resemble a saddle. Mount Silla has been declared a natural monument under the guidelines of the World Commission on Protected Areas. The Monterrey metropolitan area sits 1300 m below the steep, forested flanks of the mountain.

- Monterrey straddles several large rivers flowing out of the mountains. The Santa Catarina River cuts through the older parts of the city (such as Monterrey Antiguo). Major highways follow the river to the nearby cities of Guadalupe, San Pedro Garza, and Santa Catarina. Rio La Silla (Chair River) flows from the northern Sierra Madre Oriental mountain range and joins the Santa Catarina just outside the top left corner of the image. The semi-arid climate keeps these rivers dry for much of the year.

- Nuevo Leon state is home to the third largest economy in Mexico thanks to Monterrey's extensive manufacturing facilities and infrastructure. The size and reputation of Monterrey was built by the concentration of national and foreign industries; various metal products, chemicals, textiles, plastics, and glass are all made here. The city is also home to the massive Bancomer Stadium and one of Mexico's largest universities, the Monterrey Institute of Technology and Higher Education.

ISSImagery2_Auto9

Figure 5: This astronaut photograph ISS050-E-51179 was acquired on February 17, 2017, with a Nikon D4 digital camera using a 1150 mm lens, and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 50 crew (image credit: NASA/JSC, caption by Andi Hollier)

• May 01, 2017: An astronaut aboard the International Space Station centered this photograph on the largest group of lights in the northeastern United States (Figure 6). New York City and Newark, New Jersey, lie at the center of a string of city lights stretching roughly 300 kilometers from Philadelphia to Hartford. The characteristic shape of Long Island, during night and daylight overpasses, is one of the most recognizable features to an astronaut looking at the Northeast coast. 6)

- Night-light intensity indicates population densities, a phenomenon well-known to urban geographers. An important pattern is the progressive decline of population density away from the cores of the largest cities. Lower population densities appear in the southern counties of New Jersey, though the barrier islands are defined by narrow shoreline developments. Some rural areas in the photo have fewer lights than shipping lanes of the North Atlantic Ocean.

- A network of thin lines indicates highways and main roads—which can be difficult to discern in daylight images—radiating from the major cities. One of the brightest lines is Interstate 95 (I-95), which crosses the entire image from a point west of Philadelphia through New York—where it is overwhelmed by city lights—and along the coast of Connecticut.

ISSImagery2_Auto8

Figure 6: This astronaut photograph ISS050-E-29655 was acquired on January 10, 2017, with a Nikon D4 digital camera using a 45 mm lens, and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 50 crew (image credit: NASA Earth Observatory, image caption by Andi Hollier)

• April 28, 2017: Astronauts in space are valuable sources of scientific data. Researchers collect blood and urine samples to understand what effects living in weightlessness has on their bodies. For one experiment, investigators are interested in their breath. The Airway Monitoring experiment measures the level of nitric oxide in astronauts' lungs, a naturally occurring molecule produced in the lungs to help regulate blood flow. Small amounts are normal, but excess levels indicate airway inflammation caused by environmental factors such as dust and pollutants or diseases like asthma. — The Karolinska Institutet in Stockholm, Sweden, is analyzing astronauts' exhaled air to probe lung health. The results so far have been breathtaking. 7)

- A breath of pressurized air: With each lungful of air, our bodies absorb oxygen and exhale waste-product molecules such as carbon dioxide – and the important signalling molecule nitric oxide. The Airway Monitoring experiment looks at the amount of nitric oxide the astronauts expel in the airlock. 8)

- Aboard the Station, astronauts breathe into an analyzer at normal pressure and in the reduced pressure of the Quest airlock – similar to the pressure in future habitats on Mars and lunar colonies. The measurements are then compared to those taken before flight.

- Preliminary results are surprising. While nitric oxide levels were lower throughout astronauts' stays in space, as expected, they found that the levels initially decreased just before flight. Researchers are not yet sure why this is the case. - But the lower nitric oxide levels in astronauts' lungs means researchers have to reset the level considered to be ‘healthy' for spaceflight.

- If what is considered a normal level of nitric oxide in humans on Earth could in fact be a sign of airway inflammation for astronauts in space, researchers have a more accurate standard from which to conduct further research on lung health in space.

- This information is key to ensuring the health and safety of astronauts on longer missions further from Earth. Understanding the effects of weightlessness and reduced pressure on airway health allows us to solve future problems. This in turn will help space explorers monitor, diagnose and treat lung inflammation during spaceflight.

- For now, data from the remaining astronaut participants are needed before definitive conclusions can be made. But, overall, researchers have a better understanding of the lungs that will go a long way towards developing better diagnostic tools for airway diseases in patients on Earth.

ISSImagery2_Auto7

Figure 7: Samantha Cristoforetti on the ISS is working with equipment for the Airway Monitoring investigation (image credit: ESA/NASA, released on march 9, 2015)

• April 24, 2017: 534 days, 2 hours, 49 minutes and counting. NASA astronaut Peggy Whitson flew through the standing record for cumulative time spent in space by a U.S. astronaut at 6:27 GMT on April 24, 2017, and with the recent extension of her stay at the International Space Station, she has five months to rack up a new one. 9)

- Record holder is a familiar title for Whitson – she's held several over the course of her NASA career. In 2008, Whitson became the first woman to command the space station, and on April 9 became the first woman to command it twice. In March, she seized the record for most spacewalks by a female. Now, after launching on Nov. 17 with 377 days in space already under her belt, she's surpassed astronaut Jeff Williams' previous United States record of 534 days, 2 hours and 48 minutes of cumulative time in space.

- This is Whitson's third long-duration stay onboard the space station, and in March her mission was extended into September, increasing the amount of valuable astronaut time available for experiments on board the station. When she returns to Earth, she'll have spent more than 650 days in space, and decades supporting spaceflight from the ground.

- Whitson began her NASA career in the 1980s. With a doctorate in biochemistry, she held a number of research-related positions, and in 1992 was named project scientist of the Shuttle-Mir Program. She also served as deputy division chief of the Medical Sciences Division at NASA's Johnson Space Center in Houston and co-chair of the U.S.-Russian Mission Science Working Group before being selected as an astronaut in 1996.

ISSImagery2_Auto6

Figure 8: Photo of Peggy Whitson in the Cupola of the ISS (image credit: NASA)

• April 24, 2017: An astronaut aboard the International Space Station captured these photographs of agricultural patterns in the Riverland region of South Australia. The use of a powerful lens makes it possible to see individual buildings in the small towns, a bridge joining the towns, and one of the many locks on the river. 10)

- Renmark is one of the major towns in a line of settlements along the Murray River. The image of Figure 9 shows the winding course of the Murray in a wide floodplain, with numerous small farm plots clustered along its banks. This heavily irrigated country is a mix of grapevines, almond groves, stone-fruit orchards (like peaches and apricots), and citrus orchards. More than half of South Australia's famed wine production comes from this area.

- The intensely farmed landscape contrasts with the arid landscape in Figure 10, which shows an area just 20 km south of Renmark. A large, dry lake is crossed by a winding road. Rounded, ancient dunes stand south of the settlement of Taldra. The dry lake has been the site of growth trials for a salt-tolerant giant cane crop, according to local agriculture officials.

- Surrounding the lake is sparser vegetation that allows the underlying linear dunes to remain visible from space. The surrounding fields show faint parallel lines that indicate a plowing pattern. These fields are part of a mixed farming agriculture in which crops (mainly wheat and barley) are grown for two years, after which the fields provide pasture for grazing livestock.

ISSImagery2_Auto5

Figure 9: The astronaut photograph ISS050-E-36713 was acquired on January 27, 2017, with a Nikon D4 digital camera using an 1150 mm lens, and are provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 50 crew (image credit: NASA Earth Observatory, caption by Justin Wilkinson)

ISSImagery2_Auto4

Figure 10: The astronaut photograph ISS050-E-36717 was also acquired on January 27, 2017, with a Nikon D4 digital camera using an 1150 mm lens, and are provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 50 crew (image credit: NASA Earth Observatory, caption by Justin Wilkinson)

• April 20, 2017: If anything should break in space, let it be records. The astronauts of Expedition 50 have done just that by setting a new record for most time spent on scientific research on the International Space Station. ESA astronaut Thomas Pesquet, NASA astronauts Shane Kimbrough and Peggy Whitson, and cosmonauts Oleg Novitsky, Andrei Borisenko and Sergei Ryzhikov clocked a combined 99 hours of science in the week of 6 March. 11)

- To put this into perspective, astronauts average a 40 hour working week split between science experiments, Station maintenance and exercising for 2.5 hours a day. The record-breaking hours exclude these non-science tasks.

- Mission control tracks these statistics, as the number of hours devoted to science has fluctuated over the years on account of the Station's construction. Built over the years in segments, astronauts needed to assemble and maintain the orbital complex while also running experiments.

ISSImagery2_Auto3

Figure 11: Expedition 50 is a record-breaking team. ESA astronaut Thomas Pesquet, NASA astronauts Shane Kimbrough and Peggy Whitson, and cosmonauts (bottom row) Oleg Novitsky, Andrei Borisenko and Sergei Ryzhikov clocked a combined 99 hours of science in the week of 6 March 2017 (image credit: ESA/NASA)

ISSImagery2_Auto2

Figure 12: NASA astronaut Peggy Whitson measures pressure in ESA astronaut Thomas Pesquet's eyes for the Fluid Shift experiment. Weightlessness tends to weaken an astronaut's vision. Monitoring why and to what degree can lead to preventive measures. Experiments like this are one of many astronauts conduct during their missions on the ISS (image credit: ESA/NASA) 12)

 

• April 17, 2017: Shot by an astronaut aboard the International Space Station, this oblique photograph (Figure 13) shows most of the Kingdom of Denmark. This Nordic country lies between the Baltic Sea to the east and the North Sea to the west. The winding channels that connect the two seas are international waterways known as the Danish Straits. 13)

- The long Jutland Peninsula of western Denmark is connected to northern Germany, while the eastern half is comprised mostly of smaller islands in the Danish Archipelago. The larger islands are joined by some of the longest bridges in the world—the Storstrom, the Great Belt, and the Oresund, which joins Denmark to Sweden. The names correspond to the straits between the islands.

- During the last Ice Age (referred to as the Pleistocene Epoch), much of northwest Europe was covered with thick glaciers. Glacial deposits and kettle lakes were left behind when the ice retreated. Lowland areas now dominate Denmark, which has a mean elevation of just 34 meters above mean sea level.

- Much of the landscape is covered by wetland ecosystems of bogs filled with peat. This decayed plant matter is used as a natural resource in energy production in several northern European countries. Bogs in Europe often contain major archeological sites, and peat harvesters have stumbled upon ancient human remains that tend to be very well preserved by the highly acidic peat. The most famous Denmark "bog body" is Tollund Man, who lived in the 4th century BCE (Before Common Era).

ISSImagery2_Auto1

Figure 13: Astronaut photograph ISS050-E-51156 was acquired on February 15, 2017, with a Nikon D4 digital camera using a 48 mm lens, and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. The image was taken by a member of the Expedition 50 crew (image credit: NASA Earth Observatory, image caption by Andi Hollier)

 

• February 26, 2016: The stellar views from the International Space Station are not the only things to take an astronaut's breath away: devices like this are measuring astronauts' breath to determine the health of their lungs. ESA astronaut Tim Peake took part in the Airway Monitoring experiment during his Principia mission in 2016. 14)

- Developed by researchers at the Karolinska Institute in Sweden, the experiment draws on a study of airway inflammation that ran on the Station from 2005 to 2008.

- The analyzer measures the amount of nitric oxide in exhaled air – a signalling molecule produced in the lungs to help regulate blood vessels. Too much nitric oxide suggests inflammation. Causes can be environmental, like dust or pollutants, or biological, such as asthma – at least on Earth, but what happens in space?

- Researchers compare measurements from astronauts taken before their flights to those taken in space to understand the effects of weightlessness on airway health. Astronauts in space are essentially fish out of water. Understanding how to track, diagnose and treat lung inflammations is important for their safety.

- The experiment began with ESA astronaut Samantha Cristofretti's 2015 mission and measurements have been gathered by six astronauts. Four more astronauts will conduct the experiment next year.

ISSImagery2_Auto0

Figure 14: Photo of Tim Peake during a breathing test checking his lung health (image credit: ESA/NASA)

 


1) "Corinth Canal," NASA Earth observatory, May 22, 2017, URL: https://earthobservatory.nasa.gov/IOTD/view.php?id=90261

2) "The Peloponnese," NASA Earth Observatory, July 14, 2014, URL: https://earthobservatory.nasa.gov/IOTD/view.php?id=84011

3) "Burlington, Iowa, and the Mississippi Floodplain," NASA Earth Observatory, May 15, 2017, URL: https://earthobservatory.nasa.gov/IOTD/view.php?id=90229&src=iotdrss

4) Mark Garcia, "200th Station Spacewalk Comes to an End," NASA, May 12, 2017, URL: https://blogs.nasa.gov/spacestation/2017/05/12/200th-station-spacewalk-comes-to-an-end/

5) Pete Harding, "ISS astronauts complete 200th station EVA for maintenance tasks," NASA Spaceflight.com, May 12, 2017, URL: https://www.nasaspaceflight.com/2017/05/iss-astronauts-200th-station-eva-maintenance-tasks/

6) "The I-95 Corridor at Night," NASA Earth Observatory, May 1, 2017, URL: https://earthobservatory.nasa.gov/IOTD/view.php?id=90129&src=iotdrss

7) "Monitoring the airways," ESA, April 28, 2017, URL: http://m.esa.int/Our_Activities/Human_Spaceflight/Research/Monitoring_the_airways

8) "Samantha working on Airway Monitoring," ESA, April 28, 2017, URL: http://m.esa.int/spaceinimages/Images/2015/03/Samantha_working_on_Airway_Monitoring

9) Mark Marcia, "Record-Breaking NASA Astronaut Peggy Whitson Sets New Record for Time in Space," NASA, April 24, 2017, URL: https://www.nasa.gov/feature/record-breaking-nasa-astronaut-peggy-whitson-sets-new-record-for-time-in-space

10) "South Australia, Wet and Dry," NASA Earth Observatory, April 24, 2017, URL: https://earthobservatory.nasa.gov/IOTD/view.php?id=90080

11) "The record-breaking Expedition 50 crew," ESA, 20 April, 2017, URL: http://m.esa.int/spaceinimages/Images/2017/04/The_record-breaking_Expedition_50_crew

12) "In the name of science," ESA, 20 April 2017, URL: http://m.esa.int/spaceinimages/Images/2017/04/In_the_name_of_science

13) "A Royal View of Denmark," NASA Earth Observatory, April 17, 2017, URL: https://earthobservatory.nasa.gov/IOTD/view.php?id=90031

14) "Taking Tim's breath away," ESA, Human spaceflight and robotic exploration image of the week, released on 20 April. 2017, URL: http://www.esa.int/spaceinimages/Images/2016/02/Taking_Tim_s_breath_away
 


The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: "Observation of the Earth and Its Environment: Survey of Missions and Sensors" (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (herb.kramer@gmx.net).

2017 Images   References   Back to Top