Minimize Hubble Space Telescope

HST (Hubble Space Telescope) Mission

Background   Sensor Complement   HST Imagery   References

The HST (Hubble Space Telescope) of NASA is named in honor of the American astronomer Edwin Hubble (1889-1953), Dr. Hubble confirmed an "expanding" universe, which provided the foundation for the big-bang theory. Hubble, the observatory, is the first major optical telescope to be placed in space, the ultimate mountaintop. Above the distortion of the atmosphere, far far above rain clouds and light pollution, Hubble has an unobstructed view of the universe. Scientists have used Hubble to observe the most distant stars and galaxies as well as the planets in our solar system. 1)

The planning for HST started in the early 1970s. The HST was launched into LEO (Low Earth Orbit) on April 24, 1990 on STS-31 (12:33:51 UTC, on Shuttle Discovery). Hubble is operational as of 2018, in its 29th year on orbit, and is one of NASA's Great Observatories. Hubble's launch and deployment in April 1990 marked the most significant advance in astronomy since Galileo's telescope. Thanks to five servicing missions and more than 25 years of operation, our view of the universe and our place within it has never been the same.

Mission:

• Deployment of Hubble: April 25, 1990

• First Image: May 20, 1990: Star cluster NGC 3532

• Servicing Mission 1 (STS-61): December 1993

• Servicing Mission 2 (STS-82): February 1997

• Servicing Mission 3A (STS-103): December 1999

• Servicing Mission 3B (STS-109): February 2002

• Servicing Mission 4 (STS-125): May 2009

Spacecraft: The spacecraft has a length of 13.2 m, a mass at launch of 10,886 kg, post SM (Servicing Mission) 4 of 12,247 kg, and a maximum diameter of 4.2 m.

Orbit: LEO with an altitude of 547 km, an inclination of 28.5º, and a period of 95 minutes.

The HST (Hubble Space Telescope) of NASA features a ULE TM(Ultra-Low Expansion)primary mirror of 2.4 m diameter (f/24 Ritchey-Chretien) and a 0.3 m Zerodur secondary mirror. The HST primary mirror was a lightweighted monolithic design (824 kg) by Perkin-Elmer (now Goodrich Inc.), Danbury, CN, using a lightweight, thick egg crate core sandwiched between two plates and fused together.

The HST is the most precisely pointed instrument in spaceborne astronomy. The pointing requirements call for a continuous 24 hour target lock maintenance of 0.007 arcseconds (2 millionth degree).

Hubble_Auto1B

Figure 1: IMAX Cargo Bay Camera view of the Hubble Space Telescope at the moment of release, mission STS-31 in April 1990 (image credit: NASA)

Some background:

The telescope's original equipment package included the Wide Field/Planetary Camera (WF/PC), Goddard High Resolution Spectograph (GHRS), Faint Object Camera (FOC), Faint Object Spectograph (FOS), and High Speed Photometer (HSP). 2) 3)

After a few weeks of operation, scientists noticed that images being sent back from Hubble were slightly blurred. While this distortion still allowed scientists to study the cosmos and make significant discoveries, it resulted in less spectacular images, and some of the original mission could not be fulfilled. An investigation finally revealed a spherical aberration in the primary mirror, due to a miscalibrated measuring instrument that caused the edges of the mirror to be ground slightly too flat. Engineers rushed to come up with a fix to the problem in time for Hubble's first scheduled servicing mission in 1993. The system designed to correct the error was designated COSTAR (Corrective Optics Space Telescope Axial Replacement). COSTAR was a set of optics that compensated for the aberration and would allow all of Hubble's instruments to function normally.

In December, 1993, the crew of STS-61 embarked on a service mission to replace a number of Hubble's parts. Following intensive training on the use of new tools never used before in space, two teams of astronauts completed repairs during a record five back-to-back spacewalks. During the EVAs, COSTAR was installed and the Wide Field/Planetary Camera was replaced with the Wide Field/Planetary Camera 2, which was designed to compensate for the mirror problem. The team also performed basic maintenance on the craft, installed new solar arrays, and replaced four of Hubble's gyroscopes.

Shortly after the crew returned to Earth and the Hubble Space Telescope began returning sharp and spectacular images, NASA deemed the servicing mission a success. Astronomers could now take advantage of a fully functional space telescope, and the public was treated to breathtaking photos of stars, galaxies, nebulae, and other deep-space objects. Subsequent servicing missions improved Hubble's capabilities and performed routine repairs.

In February, 1997, the crew of STS-82 installed the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) and the Space Telescope Imaging Spectograph (STIS) to detect infrared light from deep-space objects and take detailed photos of celestial objects. Servicing mission 3A in December, 1999 replaced all six of the telescope's aging gyroscopes, which accurately point the telescope at its target. STS-103 astronauts also replaced one of the telescope's three fine guidance sensors and installed a new computer, all in time to redeploy Hubble into orbit on Christmas Day. The most recent servicing mission to the spacecraft, servicing mission 3B, came aboard STS-109 in March, 2002. Columbia crewmembers installed the new Advanced Camera for Surveys (ACS), which had sharper vision, a wider field of view, and quicker data gathering than the Wide Field/Planetary Camera 2. Astronauts also replaced Hubble's solar panels with a more efficient array and conducted repairs on the NICMOS.

Hubble_Auto1A

Figure 2: This photograph of NASA's Hubble Space Telescope was taken on the fifth servicing mission to the observatory in May 2009 (image credit: NASA)

Hubble_Auto19

Figure 3: Artist's view of the HST in space along with the designation of the key element locations (image credit: NASA)

 

Note: At this stage of the mission (2018), no attempt is being made to recover all facets of Hubble regarding the spacecraft, instrumentation and the past history (it would have required a constant accompaniment of the mission with all updates over its lifetime). Instead, some fairly recent images of the mission are presented — including the comparison image of Figure 29, showing a blurred image prior to the Servicing Mission 1 in 1993 and the vastly improved image of the spiral galaxy M100 after the Servicing Mission 1 in December 1993.

 


 

HST sensor complement: (ACS, WFC3, STIS, COS, FGS, NICMOS)

The Hubble Space Telescope has three types of instruments that analyze light from the universe: cameras, spectrographs and interferometers. 4)

Hubble_Auto18

Figure 4: Hubble's scientific instruments analyze different types of light ranging from ultraviolet (UV) to infrared (IR). This graphic shows which wavelengths each instrument studies (image credit: NASA)

 

Cameras:

Hubble has two primary camera systems to capture images of the cosmos. Called the Advanced Camera for Surveys (ACS) and the Wide Field Camera 3 (WFC3), these two systems work together to provide superb wide-field imaging over a broad range of wavelengths.

ACS (Advanced Camera for Surveys)

Installed on Hubble in 2002, ACS was designed primarily for wide-field imagery in visible wavelengths, although it can also detect ultraviolet and near-infrared light. ACS has three cameras, called channels, that capture different types of images. An electronics failure in January 2007 rendered the two most-used science channels inoperable. In 2009, astronauts were able to repair one of the channels and restored ACS's capacity to capture high-resolution, wide-field views.

WFC3 (Wide Field Camera 3)

Installed in 2009, WFC3 provides wide-field imagery in ultraviolet, visible and infrared light. WFC3 was designed to complement ACS and expand the imaging capabilities of Hubble in general. While ACS is primarily used for visible-light imaging, WFC3 probes deeper into infrared and ultraviolet wavelengths, providing a more complete view of the cosmos.

Hubble_Auto17

Figure 5: Astronaut Andrew Feustel prepares to install WFC3 (Wide Field Camera 3) on Hubble during Servicing Mission 4 in 2009 (image credit: NASA)

 

Spectrographs

Spectrographs practice spectroscopy, the science of breaking light down to its component parts, similar to how a prism splits white light into a rainbow. Any object that absorbs or emits light can be studied with a spectrograph to determine characteristics such as temperature, density, chemical composition and velocity.

Hubble currently utilizes two spectrographs: COS (Cosmic Origins Spectrograph) and the STIS (Space Telescope Imaging Spectrograph). COS and STIS are complementary instruments that provide scientists with detailed spectral data for a variety of celestial objects. While STIS is a versatile, "all purpose" spectrograph that handles bright objects well, COS measures exceedingly faint levels of ultraviolet light emanating from distant cosmic sources, such as quasars in remote galaxies. Working together, the two spectrographs provide a full set of spectroscopic tools for astrophysical research.

Hubble_Auto16

Figure 6: Hubble's STIS captured a spectrum (right) of material ejected by a pair of massive stars called Eta Carinae, while the Wide Field and Planetary Camera 2 took an image of the billowing clouds of gas enveloping the stellar pair (left). The spectrum reveals that one of the lobes contains the elements helium (He), argon (Ar), iron (Fe) and nickel (Ni), image credit: NASA, ESA and the Hubble SM4 ERO Team

 

Interferometers

Hubble's interferometers serve a dual purpose — they help the telescope maintain a steady aim and also serve as a scientific instrument. The three interferometers aboard Hubble are called the FGS (Fine Guidance Sensors). The Fine Guidance Sensors measure the relative positions and brightnesses of stars.

When Hubble is pointing at a target, two of the three Fine Guidance Sensors are used to lock the telescope onto the target. For certain observations, the third Fine Guidance Sensor can be used to gather scientific information about a target, such as a celestial object's angular diameter or star positions that are ten times more accurate than those obtained by ground-based telescopes.

The Fine Guidance Sensors are very sensitive instruments. They seek out stable point sources of light (known as "guide stars") and then lock onto them to keep the telescope pointing steadily. When a light in the sky is not a point source, the Fine Guidance Sensor cannot lock on and so it rejects the guide star. Often, a rejected guide star is actually a faraway galaxy or a double-star system. Since Hubble was launched in 1990, the Fine Guidance Sensors have detected hundreds of double-star systems that were previously thought to be single stars.

 

Past Instruments

Only one of the instruments remaining on Hubble — the third Fine Guidance Sensor — was launched with the observatory in 1990. The rest of the instruments were installed during Hubble's five servicing missions. In addition to installing new instruments, astronauts also repaired two instruments (ACS and STIS) while visiting Hubble on Servicing Mission 4 in 2009. The NICMOS (Near-Infrared Camera and Multi-Object Spectrometer) on Hubble is in hibernation following a cryocooler anomaly, but most of its infrared duties have since been taken over by WFC3.

Hubble's past instruments include:

• High Speed Photometer

• Faint Object Camera

• Faint Object Spectrograph

• Goddard High Resolution Spectrograph

• Wide Field and Planetary Camera

• Wide Field and Planetary Camera 2

• Fine Guidance Sensors (three).

 

Current Instruments

ACS (Advanced Camera for Surveys) - ACS is a third-generation imaging camera. This camera is optimized to perform surveys or broad imaging campaigns. ACS replaced Hubble's Faint Object Camera (FOC) during Servicing Mission 3B. Its wavelength range extends from the ultraviolet, through the visible and out to the near-infrared (115-1050 nm). ACS has increased Hubble's potential for new discoveries by a factor of ten.

COS (Cosmic Origins Spectrograph) - COS focuses exclusively on ultraviolet (UV) light and is the most sensitive ultraviolet spectrograph ever, increasing the sensitivity at least 10 times in the UV spectrum and up to 70 times when looking at extremely faint objects. It is best at observing points of light, like stars and quasars. COS was installed during during Servicing Mission 4 in May 2009.

STIS (Space Telescope Imaging Spectrograph) - STIS is a second-generation imager/spectrograph. STIS is used to obtain high resolution spectra of resolved objects. STIS has the special ability to simultaneously obtain spectra from many different points along a target. The STIS instrument has a mass of 318 kg and a wavelength range of 115-1000 nm.

STIS spreads out the light gathered by a telescope so that it can be analyzed to determine such properties of celestial objects as chemical composition and abundances, temperature, radial velocity, rotational velocity, and magnetic fields. Its spectrograph can be switched between two different modes of usage:

1) So-called "long slit spectroscopy" where spectra of many different points across an object are obtained simultaneously.

2) So-called "echelle spectroscopy" where the spectrum of one object is spread over the detector giving better wavelength resolution in a single exposure.

STIS also has a so-called coronagraph which can block light from bright objects, and in this way enables investigations of nearby fainter objects.

WFC3 (Wide Field Camera 3) - Wide Field Camera 3 is the main imager on the telescope. It has a camera that records visible and ultraviolet (UVIS, 200-1000 nm) wavelengths of light and is 35 times more sensitive in the UV wavelengths than its predecessor. A second camera that is built to view infrared (NIR, 850-1700 nm) light increases Hubble's IR resolution from 65,000 to 1 million pixels. Its combination of field-of-view, sensitivity, and low detector noise results in a 15-20 time improvement over Hubble's previous IR camera. WFC3 was jointly developed at GSFC, STSI (Space Telescope Science Institute) in Baltimore and Ball Aerospace & Technologies Corporation in Boulder, CO. 5)

FGS (Fine Guidance Sensor) – The FGS provides pointing information for the spacecraft by locking onto guide stars. The FGS can also function as a scientific instrument by precisely measuring the relative positions of stars, detecting rapid changes in a star's brightness, and resolving double-star systems that appear as point sources even to Hubble's cameras. Hubble has three FGSs onboard the observatory.

NICMOS (Near Infrared Camera and Multi-Object Spectrometer) – NICMOS has the ability to obtain images and spectroscopic observations of astronomical targets at near-infrared wavelengths. Although NICMOS is currently inactive, most of its functionality is replaced by Hubble's other science instruments.

 


 

HST (Hubble Space Telescope) - Some observation imagery

• July 13, 2018: In November 2008, 14-year-old Caroline Moore from New York discovered a supernova in UGC 12682. This made her the youngest person at the time to have discovered a supernova. Follow-up observations by professional astronomers of the so-called SN 2008ha showed that it was peculiarly interesting in many different ways: its host galaxy UGC 12862 rarely produces supernovae. It is one of the faintest supernovae ever observed and after the explosion it expanded very slowly, suggesting that the explosion did not release copious amounts of energy as usually expected.6)

- Astronomers have now classified SN 2008ha as a subclass of a Type Ia supernova, which is the explosion of a white dwarf that hungrily accretes matter from a companion star. SN 2008ha may have been the result of a partially failed supernova, explaining why the explosion failed to decimate the whole star.

Hubble_Auto15

Figure 7: Glowing warmly against the dark backdrop of the Universe, this image from the NASA/ESA Hubble Space Telescope shows an irregular galaxy called UGC 12682. Located approximately 70 million light-years away in the constellation of Pegasus (The Winged Horse), UGC 12682 is distorted and oddly-structured, with bright pockets of star formation (image credit: ESA/Hubble & NASA, CC BY 4.0)

• July 3, 2018: Like a July 4 fireworks display, a young, glittering collection of stars resembles an aerial burst. The cluster is surrounded by clouds of interstellar gas and dust - the raw material for new star formation. The nebula, located 20,000 light-years away in the constellation Carina, contains a central cluster of huge, hot stars, called NGC 3603. 7)

- Appearing colorful and serene, this environment is anything but. Ultraviolet radiation and violent stellar winds have blown out an enormous cavity in the gas and dust enveloping the cluster. Most of the stars in the cluster were born around the same time but differ in size, mass, temperature and color. The course of a star's life is determined by its mass, so a cluster of a given age will contain stars in various stages of their lives, giving an opportunity for detailed analyses of stellar life cycles. NGC 3603 also contains some of the most massive stars known. These huge stars live fast and die young, burning through their hydrogen fuel quickly and ultimately ending their lives in supernova explosions.

- Star clusters like NGC 3603 provide important clues to understanding the origin of massive star formation in the early, distant universe. Astronomers also use massive clusters to study distant starbursts that occur when galaxies collide, igniting a flurry of star formation. The proximity of NGC 3603 makes it an excellent lab for studying such distant and momentous events.

- This Hubble Space Telescope image was captured in August 2009 and December 2009 with the Wide Field Camera 3 in both visible and infrared light, which trace the glow of sulfur, hydrogen, and iron.

Hubble_Auto14

Figure 8: This Hubble Space Telescope image was captured in August 2009 and December 2009 with the Wide Field Camera 3 in both visible and infrared light, which trace the glow of sulfur, hydrogen, and iron [image credit: NASA, ESA, R. O'Connell (University of Virginia), F. Paresce (National Institute for Astrophysics, Bologna, Italy), E. Young (Universities Space Research Association/Ames Research Center), the WFC3 Science Oversight Committee, and the Hubble Heritage Team (STScI/AURA)]

• 25 June 2018: For years the Hubble Space Telescope has captured crisp spectral images of exoplanets transiting their host stars. Because those images include light filtered through the exoplanets' atmospheres, they contain clues about atmospheric composition. Absorption features in such spectra have produced evidence of water, carbon dioxide, methane, and even clouds in the atmospheres of extrasolar planets. 8)

- But Hubble's workhorse detector for exoplanet atmosphere observations, the Wide Field Camera 3, collects light in only 13 wavelength bins. The James Webb Space Telescope, scheduled for a 2020 launch, will be able to resolve spectra into hundreds of bins. The abundance of data could yield far more detailed portraits of extrasolar atmospheres, but it also creates a challenge: how to decipher all that information.

- Enter Kevin Heng and his coworkers at the University of Bern in Switzerland. The researchers have now demonstrated that machine learning can be used to extract atmospheric properties from even the most complicated transmission spectra. Heng and his colleagues trained their machine on tens of thousands of model spectra that were calculated analytically for atmospheres of varying temperature, cloudiness, and composition. The machine learning algorithm plots the spectra in N-dimensional space, where N is the number of wavelength bins in each spectrum, and then identifies clusters in that multidimensional space. Model atmospheres belonging to the same cluster tend to share similar physical attributes, so when the trained machine is given a real-life spectrum to analyze, it plots the spectrum and assigns to it the physical attributes of the nearest cluster.

- Reassuringly, a test-run analysis of the gas-giant planet WASP-12b yielded results similar to those of more conventional techniques. The test was implemented in 13-dimensional space, to match Hubble's 13 spectral bins, but future implementations using more detailed spectra could include thousands of dimensions. 9)

• 25 June 2018: As if this Hubble Space Telescope picture isn't cluttered enough with myriad galaxies, nearby asteroids photobomb the image, their trails sometimes mimicking background astronomical phenomena. 10)

- The stunningly beautiful galaxy cluster Abell 370 (Figure 9) contains an astounding assortment of several hundred galaxies tied together by the mutual pull of gravity. Located approximately four billion light years away in the constellation Cetus, the Sea Monster, this immense cluster is a rich mix of a variety of galaxy shapes.

- Entangled among the galaxies are thin, white trails that look like curved or S-shaped streaks. These are trails from asteroids that reside, on average, only about 260 million kilometers from Earth – right around the corner in astronomical terms. The trails appear in multiple Hubble exposures that have been combined into one image. Of the 22 total asteroid sightings for this field, five are unique objects. These asteroids are so faint that they were not previously identified.

- The asteroid trails look curved due to an observational effect called parallax. As Hubble orbits around Earth, an asteroid will appear to move along an arc with respect to the vastly more distant background stars and galaxies. The motion of Earth around the Sun, and the motion of the asteroids along their orbits, are other contributing factors to the apparent skewing of asteroid paths.

- All the asteroids were found manually, the majority by "blinking" consecutive exposures to capture apparent asteroid motion. Astronomers found a unique asteroid for every 10 to 20 hours of exposure time.

- These asteroid trails should not be confused with the mysterious-looking arcs of blue light that are actually distorted images of distant galaxies behind the cluster. Many of these far-flung galaxies are too faint for Hubble to see directly. Instead, in a dramatic example of "gravitational lensing," the cluster functions as a natural telescope, warping space and affecting light traveling through the cluster toward Earth.

- The study was part of the Frontier Fields program and the image, assembled from several exposures taken in visible and infrared light, was first published on 6 November 2017.

Hubble_Auto13

Figure 9: This image was assembled from several exposures taken in visible and infrared light. The field's position on the sky is near the ecliptic, the plane of our Solar System. This is the zone in which most asteroids reside, which is why Hubble astronomers saw so many crossings. Hubble deep-sky observations taken along a line-of-sight near the plane of our Solar System commonly record asteroid trails (image credit: NASA, ESA, and B. Sunnquist and J. Mack (STScI) Acknowledgment: NASA, ESA, and J. Lotz (STScI) and the HFF Team)

- Every year on 30 June, the global "Asteroid Day" event takes place to raise awareness about asteroids and what can be done to protect Earth from possible impact. The day falls on the anniversary of the Tunguska event that took place on 30 June 1908, the most harmful known asteroid related event in recent history. This year, ESA is co-hosting a live webcast with the European Southern Observatory packed with expert interviews, news on some of the most recent asteroid science results, and the truth about the dinosaurs. Watch 30 June at 13:00 CEST via http://www.esa.int/Our_Activities/Space_Engineering_Technology/Asteroid_day

• 21 June 2018: An international team of astronomers using the NASA/ESA Hubble Space Telescope and the European Southern Observatory's VLT (Very Large Telescope) has made the most precise test of general relativity yet outside our Milky Way. The nearby galaxy ESO 325-G004 acts as a strong gravitational lens, distorting light from a distant galaxy behind it to create an Einstein ring around its center. By comparing the mass of ESO 325-G004 with the curvature of space around it, the astronomers found that gravity on these astronomical length-scales behaves as predicted by general relativity. This rules out some alternative theories of gravity. 11) 12)

- Using the NASA/ESA Hubble Space Telescope and European Southern Observatory's VLT, a team led by Thomas Collett (University of Portsmouth, UK), was able to perform the most precise test of general relativity outside the Milky Way to date.

- The theory of general relativity predicts that objects deform spacetime, causing any light that passes by to be deflected and resulting in a phenomenon known as gravitational lensing. This effect is only noticeable for very massive objects. A few hundred strong gravitational lenses are known, but most are too distant to precisely measure their mass. However, the elliptical galaxy ESO 325-G004 is amongst the closest lenses at just 450 million light-years from Earth.

- Using the MUSE (Multi Unit Spectroscopic Explorer) instrument on the VLT the team calculated the mass of ESO 325-G004 by measuring the movement of stars within it. Using Hubble the scientists were able to observe an Einstein ring resulting from light from a distant galaxy being distorted by the intervening ESO 325-G004. Studying the ring allowed the astronomers to measure how light, and therefore spacetime, is being distorted by the huge mass of ESO 325-G004.

- Collett comments: "We know the mass of the foreground galaxy from MUSE and we measured the amount of gravitational lensing we see from Hubble. We then compared these two ways to measure the strength of gravity – and the result was just what general relativity predicts, with an uncertainty of only nine percent. This is the most precise test of general relativity outside the Milky Way to date. And this using just one galaxy!"

- General relativity has been tested with exquisite accuracy on Solar System scales, and the motions of stars around the black hole at the center of the Milky Way are under detailed study, but previously there had been no precise tests on larger astronomical scales. Testing the long range properties of gravity is vital to validate our current cosmological model.

Hubble_Auto12

Figure 10: An image of the nearby galaxy ESO 325-G004, created using data collected by the NASA/ESA Hubble Space Telescope and the MUSE instrument on the ESO's Very Large Telescope. MUSE measured the velocity of stars in ESO 325-G004 to produce the velocity dispersion map that is overlaid on top of the Hubble Space Telescope image. Knowledge of the velocities of the stars allowed the astronomers to infer the mass of ESO 325-G004. The inset shows the Einstein ring resulting from the distortion of light from a more distant source by intervening lens ESO 325-004, which becomes visible after subtraction of the foreground lens light (image credit: ESO, ESA/Hubble, NASA)

- These findings may have important implications for models of gravity alternative to general relativity. These alternative theories predict that the effects of gravity on the curvature of spacetime are "scale dependent". This means that gravity should behave differently across astronomical length-scales from the way it behaves on the smaller scales of the Solar System. Collett and his team found that this is unlikely to be true unless these differences only occur on length scales larger than 6000 light-years.

- "The Universe is an amazing place providing such lenses which we can use as our laboratories," adds team member Bob Nichol (University of Portsmouth). "It is so satisfying to use the best telescopes in the world to challenge Einstein, only to find out how right he was."

• 31 May 2018: Though it resembles a peaceful rose swirling in the darkness of the cosmos, NGC 3256 is actually the site of a violent clash. This distorted galaxy is the relic of a collision between two spiral galaxies, estimated to have occurred 500 million years ago. Today it is still reeling in the aftermath of this event. 13)

- Located about 100 million light-years away in the constellation of Vela (The Sails), NGC 3256 is approximately the same size as our Milky Way and belongs to the Hydra-Centaurus Supercluster. It still bears the marks of its tumultuous past in the extended luminous tails that sprawl out around the galaxy, thought to have formed 500 million years ago during the initial encounter between the two galaxies, which today form NGC 3256. These tails are studded with young blue stars, which were born in the frantic but fertile collision of gas and dust.

- When two galaxies merge, individual stars rarely collide because they are separated by such enormous distances, but the gas and dust of the galaxies do interact – with spectacular results. The brightness blooming in the center of NGC 3256 gives away its status as a powerful starburst galaxy, host to vast amounts of infant stars born into groups and clusters. These stars shine most brightly in the far infrared, making NGC 3256 exceedingly luminous in this wavelength domain. Because of this radiation, it is classified as a Luminous Infrared Galaxy.

- NGC 3256 has been the subject of much study due to its luminosity, its proximity, and its orientation: astronomers observe its face-on orientation, that shows the disc in all its splendor. NGC 3256 provides an ideal target to investigate starbursts that have been triggered by galaxy mergers. It holds particular promise to further our understanding of the properties of young star clusters in tidal tails.

- As well as being lit up by over 1000 bright star clusters, the central region of NGC 3256 is also home to crisscrossing threads of dark dust and a large disc of molecular gas spinning around two distinct nuclei – the relics of the two original galaxies. One nucleus is largely obscured, only unveiled in infrared, radio and X-ray wavelengths.

- These two initial galaxies were gas-rich and had similar masses, as they seem to be exerting roughly equal influence on each other. Their spiral disks are no longer distinct, and in a few hundred million years' time, their nuclei will also merge and the two galaxies will likely become united as a large elliptical galaxy.

- NGC 3256 was previously imaged through fewer filters by the NASA/ESA Hubble Space Telescope as part of a large collection of 59 images of merging galaxies, released for Hubble's 18th anniversary on 24 April 2008.

Hubble_Auto11

Figure 11: This image, taken with the Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS), both installed on the NASA/ESA Hubble Space Telescope, shows the peculiar galaxy NGC 3256. The galaxy is about 100 million light-years from Earth and is the result of a past galactic merger, which created its distorted appearance. As such, NGC 3256 provides an ideal target to investigate starbursts that have been triggered by galaxy mergers (image credit: ESA/Hubble, NASA, CC BY 4.0)

• 28 May 2018: This NASA/ESA Hubble Space Telescope image shows a cluster of hundreds of galaxies located about 7.5 billion light-years from Earth (Figure 12). The brightest galaxy within this cluster named SDSS J1156+1911 and known as the Brightest Cluster Galaxy (BCG), is visible in the lower middle of the frame. It was discovered by the Sloan Giant Arcs Survey which studied data maps covering huge parts of the sky from the Sloan Digital Sky Survey. The survey found more than 70 galaxies that look to be significantly affected by a cosmic phenomenon known as gravitational lensing. 14)

- Gravitational lensing is one of the predictions of Albert Einstein's General Theory of Relativity. The mass contained within a galaxy is so immense that it can actually warp and bend the very fabric of its surroundings (known as space-time), forcing light to travel along curved paths. As a result, the image of a more distant galaxy appears distorted and amplified to an observer, as the light from it has been bent around the intervening galaxy. This effect can be very useful in astronomy, allowing astronomers to see galaxies that are either obscured or too distant to be otherwise detected by our current instruments.

- Galaxy clusters are giant structures containing hundreds to thousands of galaxies, some with masses over one million billion times the mass of the Sun! SDSS J1156+1911 is only roughly 600 billion times the mass of the Sun, making it less massive than the average galaxy. However, it is massive enough to produce the fuzzy, greenish streak seen just below the brightest galaxy — the lensed image of a more distant galaxy.

Hubble_Auto10

Figure 12: This Hubble image shows a cluster of hundreds of galaxies located about 7.5 billion light-years from Earth (image credit: ESA/Hubble & NASA; Acknowledgment: Judy Schmidt (Geckzilla))

• 17 May 2018: Ultraviolet light is a major tracer of the youngest and hottest stars. These stars are short-lived and intensely bright. Astronomers have now finished a survey called LEGUS (Legacy ExtraGalactic UV Survey) that captured the details of 50 local galaxies within 60 million light-years of Earth in both visible and ultraviolet light. 15) 16)

- The LEGUS team carefully selected its targets from among 500 candidate galaxies compiled from ground-based surveys. They chose the galaxies based on their mass, star-formation rate, and their abundances of elements heavier than hydrogen and helium. Because of the proximity of the selected galaxies, Hubble was able to resolve them into their main components: stars and star clusters. With the LEGUS data, the team created a catalog with about 8000 young clusters and it also created a star catalog comprising about 39 million stars that are at least five times more massive than our Sun.

- The data, gathered with Hubble's WFC3 (Wide Field Camera 3) and ACS (Advanced Camera for Surveys), provide detailed information on young, massive stars and star clusters, and how their environment affects their development. As such, the catalogue offers an extensive resource for understanding the complexities of star formation and galaxy evolution.

- One of the key questions the survey may help astronomers answer is the connection between star formation and the major structures, such as spiral arms, that make up a galaxy. These structured distributions are particularly visible in the youngest stellar populations.

- By resolving the fine details of the studied galaxies, while also studying the connection to larger galactic structures, the team aims to identify the physical mechanisms behind the observed distribution of stellar populations within galaxies.

- Figuring out the final link between gas and star formation is key to fully understanding galaxy evolution. Astronomers are studying this link by looking at the effects of the environment on star clusters, and how their survival is linked to their surroundings.

- LEGUS will not only allow astronomers to understand the local Universe. It will also help interpret views of distant galaxies, where the ultraviolet light from young stars is stretched to infrared wavelengths due to the expansion of space. The NASA/ESA/CSA James Webb Space Telescope and its ability to observe in the far infrared will complement the LEGUS views.

Hubble_AutoF

Figure 13: The glowing spiral arms of NGC 6744. This image shows the galaxy NGC 6744, about 30 million light-years away. It is one of 50 galaxies observed as part of the Hubble Space Telescope's Legacy ExtraGalactic UV Survey (LEGUS), the sharpest, most comprehensive ultraviolet-light survey of star-forming galaxies in the nearby Universe, offering an extensive resource for understanding the complexities of star formation and galaxy evolution. The image is a composite using both ultraviolet light and visible light, gathered with Hubble's Wide Field Camera 3 and Advanced Camera for Surveys (image credit: NASA, ESA, and the LEGUS team)

Hubble_AutoE

Figure 14: Dwarf galaxy UGCA 281. UGCA 281 is a blue compact dwarf galaxy located in the constellation of Canes Venatici. Within it, two giant star clusters appear brilliant white and are swaddled by greenish hydrogen gas clouds. These clusters are responsible for most of the recent star formation in UGCA 281; the rest of the galaxy is comprised of older stars and appears redder in color. The reddish objects in the background are background galaxies that appear through the diffuse dwarf galaxy. The image is a composite using both ultraviolet light and visible light, gathered with Hubble's Wide Field Camera 3 and Advanced Camera for Surveys (image credit: NASA, ESA, and the LEGUS team)

• 16 My 2018: Resembling a wizard's staff set aglow, NGC 1032 cleaves the quiet darkness of space in two in this image from the NASA/ESA Hubble Space Telescope (Figure 15). 17)

- NGC 1032 is located about a hundred million light years away in the constellation Cetus (The Sea Monster). Although beautiful, this image perhaps does not do justice to the galaxy's true aesthetic appeal: NGC 1032 is actually a spectacular spiral galaxy, but from Earth, the galaxy's vast disc of gas, dust and stars is seen nearly edge-on.

Hubble_AutoD

Figure 15: A handful of other galaxies can be seen lurking in the background, scattered around the narrow stripe of NGC 1032. Many are oriented face-on or at tilted angles, showing off their glamorous spiral arms and bright cores. Such orientations provide a wealth of detail about the arms and their nuclei, but fully understanding a galaxy's three-dimensional structure also requires an edge-on view. This gives astronomers an overall idea of how stars are distributed throughout the galaxy and allows them to measure the "height" of the disc and the bright star-studded core (image credit: ESA/Hubble & NASA, CC BY 4.0)

• 02 May 2018: Astronomers using the NASA/ESA Hubble Space Telescope have detected helium in the atmosphere of the exoplanet WASP-107b. This is the first time this element has been detected in the atmosphere of a planet outside the Solar System. The discovery demonstrates the ability to use infrared spectra to study exoplanet extended atmospheres. 18)

- The international team of astronomers, led by Jessica Spake, a PhD student at the University of Exeter in the UK, used Hubble's Wide Field Camera 3 to discover helium in the atmosphere of the exoplanet WASP-107b. This is the first detection of its kind.

- Spake explains the importance of the discovery: "Helium is the second-most common element in the Universe after hydrogen. It is also one of the main constituents of the planets Jupiter and Saturn in our Solar System. However, up until now helium had not been detected on exoplanets - despite searches for it."

- The team made the detection by analyzing the infrared spectrum of the atmosphere of WASP-107b. Previous detections of extended exoplanet atmospheres have been made by studying the spectrum at ultraviolet and optical wavelengths; this detection therefore demonstrates that exoplanet atmospheres can also be studied at longer wavelengths.
Note: The measurement of an exoplanet's atmosphere is performed when the planet passes in front of its host star. A tiny portion of the star's light passes through the exoplanet's atmosphere, leaving detectable fingerprints in the spectrum of the star. The larger the amount of an element present in the atmosphere, the easier the detection becomes.

- "The strong signal from helium we measured demonstrates a new technique to study upper layers of exoplanet atmospheres in a wider range of planets," says Spake "Current methods, which use ultraviolet light, are limited to the closest exoplanets. We know there is helium in the Earth's upper atmosphere and this new technique may help us to detect atmospheres around Earth-sized exoplanets – which is very difficult with current technology."

- WASP-107b is one of the lowest density planets known: While the planet is about the same size as Jupiter, it has only 12% of Jupiter's mass. The exoplanet is about 200 light-years from Earth and takes less than six days to orbit its host star.

- The amount of helium detected in the atmosphere of WASP-107b is so large that its upper atmosphere must extend tens of thousands of kilometers out into space. This also makes it the first time that an extended atmosphere has been discovered at infrared wavelengths.

Hubble_AutoC

Figure 16: Artist's impression of WASP-107b (image credit: ESA/Hubble, NASA, M. Kornmesser, CC BY 4.0)

- Since its atmosphere is so extended, the planet is losing a significant amount of its atmospheric gases into space – between ~0.1-4% of its atmosphere's total mass every billion years.
Note: Stellar radiation has a significant effect on the rate at which a planet's atmosphere escapes. The star WASP-107 is highly active, supporting the atmospheric loss. As the atmosphere absorbs radiation it heats up, so the gas rapidly expands and escapes more quickly into space.

- As far back as the year 2000, it was predicted that helium would be one of the most readily-detectable gases on giant exoplanets, but until now, searches were unsuccessful.

- David Sing, co-author of the study also from the University of Exeter, concludes: "Our new method, along with future telescopes such as the NASA/ESA/CSA James Webb Space Telescope, will allow us to analyze atmospheres of exoplanets in far greater detail than ever before." 19)

• 19 April 2018: To celebrate its 28th anniversary in space the NASA/ESA Hubble Space Telescope took this amazing and colorful image of the Lagoon Nebula (Figure 17). The whole nebula, about 4000 light-years away, is an incredible 55 light-years wide and 20 light-years tall. This image shows only a small part of this turbulent star-formation region, about four light-years across. 20)

- This stunning nebula was first catalogued in 1654 by the Italian astronomer Giovanni Battista Hodierna, who sought to record nebulous objects in the night sky so they would not be mistaken for comets. Since Hodierna's observations, the Lagoon Nebula has been photographed and analysed by many telescopes and astronomers all over the world.

Hubble_AutoB

Figure 17: The observations were taken by Hubble's Wide Field Camera 3 between 12 February and 18 February 2018 (image credit: NASA, ESA, STScI, CC BY 4.0)

• 10 April 2018: This NASA/ESA Hubble Space Telescope image (Figure 18) shows a massive galaxy cluster glowing brightly in the darkness. Despite its beauty, this cluster bears the distinctly unpoetic name of PLCK_G308.3-20.2. 21)

- Galaxy clusters can contain thousands of galaxies all held together by the glue of gravity. At on22)e point in time they were believed to be the largest structures in the Universe — until they were usurped in the 1980s by the discovery of superclusters, which typically contain dozens of galaxy clusters and groups and span hundreds of millions of light-years. However, clusters do have one thing to cling on to; superclusters are not held together by gravity, so galaxy clusters still retain the title of the biggest structures in the Universe bound by gravity.

- One of the most interesting features of galaxy clusters is the stuff that permeates the space between the constituent galaxies: the intracluster medium (ICM). High temperatures are created in these spaces by smaller structures forming within the cluster. This results in the ICM being made up of plasma — ordinary matter in a superheated state. Most luminous matter in the cluster resides in the ICM, which is very luminous X-rays. However, the majority of the mass in a galaxy cluster exists in the form of non-luminous dark matter. Unlike plasma, dark matter is not made from ordinary matter such as protons, neutrons and electrons. It is a hypothesized substance thought to make up 80 % of the Universe's mass, yet it has never been directly observed.

Hubble_AutoA

Figure 18: This image was taken by Hubble's Advanced Camera for Surveys and Wide-Field Camera 3 as part of an observing program called RELICS (Reionization Lensing Cluster Survey). RELICS imaged 41 massive galaxy clusters with the aim of finding the brightest distant galaxies for the forthcoming NASA/ESA/CSA James Webb Space Telescope(JWST) to study (image credit: ESA/Hubble & NASA, RELICS)

• 02 April 2018: Astronomers using the NASA/ESA Hubble Space Telescope have found the most distant star ever discovered. The hot blue star existed only 4.4 billion years after the Big Bang. This discovery provides new insight into the formation and evolution of stars in the early Universe, the constituents of galaxy clusters and also on the nature of dark matter. 23)

Hubble_Auto9

Figure 19: Appearance of the most distant star (image credit: NASA & ESA and P. Kelly (University of California, Berkeley))

- The international team, led by Patrick Kelly (University of Minnesota, USA), Jose Diego (Instituto de Física de Cantabria, Spain) and Steven Rodney (University of South Carolina, USA), discovered the distant star in the galaxy cluster MACS J1149-2223 in April 2016. The observations with Hubble were actually performed in order to detect and follow the latest appearance of the gravitationally lensed supernova explosion nicknamed "Refsdal" (heic1525), when an unexpected point source brightened in the same galaxy that hosted the supernova.

- "Like the Refsdal supernova explosion the light of this distant star got magnified, making it visible for Hubble," says Patrick Kelly. "This star is at least 100 times farther away than the next individual star we can study, except for supernova explosions."

- The observed light from the newly discovered star, called Lensed Star 1 (LS1) was emitted when the Universe was only about 30 percent of its current age – about 4.4 billion years after the Big Bang. The detection of the star through Hubble was only possible because the light from the star was magnified 2000 times.

- "The star became bright enough to be visible for Hubble thanks to a process called gravitational lensing," explains Jose Diego. The light from LS1 was magnified not only by the huge total mass of the galaxy cluster, but also by another compact object of about three times the mass of the Sun within the galaxy cluster itself; an effect known as gravitational microlensing.
Note: Gravitational lensing magnifies the light from fainter, background objects, allowing Hubble to see objects it would otherwise not be able to detect. The process was first predicted by Albert Einstein and is now used to find some of the most distant objects in the Universe. Usually the lensing object is a galaxy or a galaxy cluster, but in some cases it can also be a star or even a planet. When it involves these smaller objects the process is called microlensing.

- "The discovery of LS1 allows us to gather new insights into the constituents of the galaxy cluster. We know that the microlensing was caused by either a star, a neutron star, or a stellar-mass black hole," explains Steven Rodney. LS1 therefore allows astronomers to study neutron stars and black holes, which are otherwise invisible and they can estimate how many of these dark objects exist within this galaxy cluster.

- As galaxy clusters are among the largest and most massive structures in the Universe, learning about their constituents also increases our knowledge about the composition of the Universe overall. This includes additional information about the mysterious dark matter.

- "If dark matter is at least partially made up of comparatively low-mass black holes, as it was recently proposed, we should be able to see this in the light curve of LS1. Our observations do not favor the possibility that a high fraction of dark matter is made of these primordial black holes with about 30 times the mass of the Sun", highlights Kelly.

- After the discovery the researchers used Hubble again to measure a spectrum of LS1. Based on their analysis, the astronomers think that LS1 is a B-type supergiant star. These stars are extremely luminous and blue in color, with a surface temperature between 11,000 and 14,000 degrees Celsius; making them more than twice as hot as the Sun.

- But this was not the end of the story. Observations made in October 2016 suddenly showed a second image of the star. "We were actually surprised to not have seen this second image in earlier observations, as also the galaxy the star is located in can be seen twice," comments Diego. "We assume that the light from the second image has been deflected by another moving massive object for a long time – basically hiding the image from us. And only when the massive object moved out of the line of sight the second image of the star became visible." This second image and the blocking object add another piece of the puzzle to reveal the makeup of galaxy clusters.

- With more research and the arrival of new, more powerful telescopes like the NASA/ESA/CSA James Webb Space Telescope, the astronomers suggest that with microlensing, it will be possible to study the evolution of the earliest stars in the Universe in greater detail than ever expected.

•30 March 2018: The image of Figure 20, captured by the ACS (Advanced Camera for Surveys) on the NASA/ESA Hubble Space Telescope, shows the spiral galaxy NGC 5714, about 130 million light-years away in the constellation of Boötes (the Herdsman). NGC 5714 is classified as a Sc spiral galaxy, but its spiral arms — the dominating feature of spiral galaxies — are almost impossible to see, as NGC 1787 presents itself at an almost perfectly edge-on angle. 24) 25)

- Discovered by William Herschel in 1787, NGC 5714 was host to a fascinating and rare event in 2003. A faint supernova appeared about 8000 light-years below the central bulge of NGC 5714. Supernovae are the huge, violent explosions of dying stars, and the one that exploded in NGC 5714 — not visible in this much later image — was classified as a Type Ib/c supernova and named SN 2003dr. It was particularly interesting because its spectrum showed strong signatures of calcium.

- Calcium-rich supernovae are rare and hence of great interest to astronomers. Astronomers still struggle to explain these particular explosions as their existence presents a challenge to both observation and theory. In particular, their appearance outside of galaxies, their lower luminosity compared to other supernovae, and their rapid evolution are still open questions for researchers.

Hubble_Auto8

Figure 20: Image of the spiral galaxy NGC 5714, captured by the NASA/ESA Hubble Space Telescope (image credit: ESA/Hubble & NASA)

• 28 March 2018: An international team of researchers using the NASA/ESA Hubble Space Telescope and several other observatories have, for the first time, uncovered a galaxy in our cosmic neighborhood that is missing most – if not all – of its dark matter. This discovery of the galaxy NGC 1052-DF2 challenges currently-accepted theories of and galaxy formation and provides new insights into the nature of dark matter. The results are published in Nature. 26) 27)

Hubble_Auto7

Figure 21: A ghostly galaxy lacking dark matter (image credit: NASA, ESA, and P. van Dokkum (Yale University))

- Astronomers using Hubble and several ground-based observatories have found a unique astronomical object: a galaxy that appears to contain almost no dark matter. Hubble helped to accurately confirm the distance of NGC 1052-DF2 to be 65 million light-years and determined its size and brightness. Based on these data the team discovered that NGC 1052-DF2 larger than the Milky Way, but contains about 250 times fewer stars, leading it to be classified as an ultra diffuse galaxy.
Note 1: The galaxy was identified with the Dragonfly Telephoto Array (DFA) and also observed by the Sloan Digital Sky Survey (SDSS). As well as the NASA/ESA Hubble Space Telescope, the Gemini Observatory and the Keck Observatory were used to study the object in more detail.

- "I spent an hour just staring at this image," lead researcher Pieter van Dokkum of Yale University says as he recalls first seeing the Hubble image of NGC 1052-DF2. "This thing is astonishing: a gigantic blob so sparse that you see the galaxies behind it. It is literally a see-through galaxy."

- Further measurements of the dynamical properties of ten globular clusters orbiting the galaxy allowed the team to infer an independent value of the galaxies mass. This mass is comparable to the mass of the stars in the galaxy, leading to the conclusion that NGC 1052-DF2 contains at least 400 times less dark matter than astronomers predict for a galaxy of its mass, and possibly none at all. This discovery is unpredicted by current theories on the distribution of dark matter and its influence on galaxy formation.
Note 2: Since 1884 astronomers have invoked dark matter to explain why galaxies do not fly apart, given the speed at which the stars within galaxies move. From Kepler's Second Law it is expected that the rotation velocities of stars will decrease with distance from the center of a galaxy. This is not observed.

- "Dark matter is conventionally believed to be an integral part of all galaxies – the glue that holds them together and the underlying scaffolding upon which they are built," explains co-author Allison Merritt from Yale University and the Max Planck Institute for Astronomy, Germany. And van Dokkum adds: "This invisible, mysterious substance is by far the most dominant aspect of any galaxy. Finding a galaxy without any is completely unexpected; it challenges standard ideas of how galaxies work." - Merritt remarks: "There is no theory that predicts these types of galaxies – how you actually go about forming one of these things is completely unknown."

- Although counterintuitive, the existence of a galaxy without dark matter negates theories that try to explain the Universe without dark matter being a part of it. The discovery of NGC 1052-DF2 demonstrates that dark matter is somehow separable from galaxies. This is only expected if dark matter is bound to ordinary matter through nothing but gravity.
Note3: The MOND theory – Modified Newtonian Dynamics – suggests that the phenomena usually attributed to dark matter can be explained by modifying the laws of gravity. The result of this would be that a signature usually attributed to dark matter should always be detected, and is an unavoidable consequence of the presence of ordinary matter.

- Meanwhile, the researchers already have some ideas about how to explain the missing dark matter in NGC 1052-DF2. Did a cataclysmic event such as the birth of a multitude of massive stars sweep out all the gas and dark matter? Or did the growth of the nearby massive elliptical galaxy NGC 1052 billions of years ago play a role in NGC 1052-DF2's dark matter deficiency?

- These ideas, however, still do not explain how this galaxy formed. To find an explanation, the team is already hunting for more dark-matter deficient galaxies as they analyze Hubble images of 23 ultra-diffuse galaxies – three of which appear to be similar to NGC 1052-DF2.

 

• April 24, 2017: Since its launch on 24 April 1990, Hubble has been nothing short of a revolution in astronomy. The first orbiting facility of its kind, for 27 years the telescope has been exploring the wonders of the cosmos. Astronomers and the public alike have witnessed what no other humans in history have before. In addition to revealing the beauty of the cosmos, Hubble has proved itself to be a treasure chest of scientific data that astronomers can access. 28) 29)

- NASA and ESA celebrate Hubble's birthday each year with a spectacular image. This year's anniversary image features a pair of spiral galaxies known as NGC 4302 – seen edge-on – and NGC 4298, both located 55 million light-years away in the northern constellation of Coma Berenices (Berenice's Hair). The pair, discovered by astronomer William Herschel in 1784, form part of the Virgo Cluster, a gravitationally bound collection of nearly 2000 individual galaxies. Such objects were first simply called "spiral nebulas," because it wasn't known how far away they were. In the early 20th century, Edwin Hubble discovered that galaxies are other island cities of stars far outside our Milky Way.

- At their closest points, the galaxies are separated from each other in projection by only around 7000 light-years. Given this very close arrangement, astronomers are intrigued by the galaxies' apparent lack of any significant gravitational interaction; only a faint bridge of neutral hydrogen gas – not visible in this image – appears to stretch between them. The long tidal tails and deformations in their structure that are typical of galaxies lying so close to each other are missing completely.

Hubble_Auto6

Figure 22: HST images of spiral galaxies NGC 4302 (left) and NGC 4298 (right), both located 55 million light-years away. They were observed by Hubble to celebrate its 27th year in orbit. The image in visible and infrared light brilliantly captures their warm stellar glow and brown, mottled patterns of dust [image credit: NASA, ESA, and M. Mutchler (STScI)]

- The edge-on galaxy is called NGC 4302, and the tilted galaxy is NGC 4298. These galaxies look quite different because we see them angled at different positions on the sky. They are actually very similar in terms of their structure and contents.

- From our view on Earth, researchers report an inclination of 90 degrees for NGC 4302, which is exactly edge on. NGC 4298 is tilted 70 degrees.

- In NGC 4298, the telltale, pinwheel-like structure is visible, but it's not as prominent as in some other spiral galaxies. In the edge-on NGC 4302, dust in the disk is silhouetted against rich lanes of stars. Absorption by dust makes the galaxy appear darker and redder than its companion. A large blue patch appears to be a giant region of recent star formation.

Figure 23: This animation zooms through the Virgo Cluster of nearly 2,000 galaxies into tight Hubble Space Telescope images of spiral galaxies NGC 4302 (left) and NGC 4298 (right) in visible and infrared light. Located approximately 55 million light-years away, the starry pair offers a glimpse of what our Milky Way galaxy would look like to an outside observer [image credit: NASA, ESA, and G. Bacon, J. DePasquale, and Z. Levay (STScI) Acknowledgment: A. Fujii; Digitized Sky Survey (DSS), STScI/AURA, Palomar/Caltech, and UKSTU/AAO; B. Franke (Focal Point Observatory); and M. Mutchler (STScI)]

- A typical spiral galaxy has arms of young stars that wind outward from its center. The bright arms are regions of intense star formation. Such galaxies have a central bulge and are surrounded by a faint halo of stars. Many spiral galaxies also have bars that extend from the central bulge to the arms.

- The edge-on NGC 4302 is about 87,000 light-years in diameter, which is about 60 percent the size of the Milky Way. It is about 110 billion solar masses, approximately one-tenth of the Milky Way's mass.

- The tilted NGC 4298 is about 45,000 light-years in diameter, about one third the size of the Milky Way. At 17 billion solar masses, it is less than 2 percent of the Milky Way galaxy's 1 trillion solar masses.

- The Hubble observations were taken between 2 - 22 January, 2017 with the WFC3 (Wide Field Camera 3) instrument in three visible light bands.

 

Hubble's 25th anniversary on orbit on April 24, 2015

From planets to planetary nebula, and from star formation to supernova explosions, the NASA/ESA Hubble Space Telescope has captured a wealth of astronomical objects in its 25-year career. The montage of Figure 24 presents 25 images that sample the space telescope's rich contribution to our understanding of the Universe around us. 30) 31) 32)

The NASA/ESA Hubble was launched into orbit by the Space Shuttle on 24 April 1990 (12:33:51 UTC). It was the first space telescope of its kind, and has surpassed all expectations, providing a quarter of a century of discoveries, stunning images and outstanding science.

The anniversary image (Figure 25) is bursting with silver anniversary fireworks, showing off a giant young star cluster known as Westerlund 2, sparkling with the light of about 3000 stars. Hubble's sharp vision resolves the dense concentration of stars in the central cluster, which measures only about 10 light-years across.

A new anniversary image of Hubble is released every year and shown in Figure 24.

At the center of the collage is Star cluster Westerlund 2, the image released on the occasion of Hubble's 25th anniversary.

Top row (from left to right): Interacting galaxies , Abell 2218 , Comet ISON , Jupiter , Green filament in the Teacup galaxy , Star formation in 30 Doradus , Interacting galaxies Arp 273

Second row: Saturn , The Ring Nebula , "Mystic Mountain" in the Carina Nebula , Crab Nebula

Third row: The horsehead nebula , Carina Nebula , Planetary nebula NGC 6302 , Star formation in M17

Fourth row: Globular cluster NGC 121 , "Pillars of creation" , Ring galaxy AM 0644-741,

Fifth row: Colliding galaxies Arp 272, Star cluster NGC 602, Hubble Ultra Deep Field, Mars, Variable star RS Puppis , Orion Nebula

Table 1: Links to the Hubble anniversary images in Figure 24 (Ref. 30)

Hubble_Auto5

Figure 24: Collage of 25 images representing Hubble's rich contribution to our understanding of the Universe (image credit: NASA/ESA)

 

• This glittering tapestry of young stars flaring into life in the star cluster Westerlund 2 has been released to celebrate the NASA/ESA Hubble Space Telescope's 25th year in orbit and a quarter of a century of discoveries, stunning images and outstanding science. 33)

Hubble_Auto4

Figure 25: NASA unveils Celestial Fireworks as Official Image for Hubble's 25th Anniversary on April 24, 2015. The image was acquired with WFC-3 (Wide Field Camera-3) piercing through the dusty veil shrouding the stellar nursery in near-infrared light, giving astronomers a clear view of the nebula and the dense concentration of stars in the central cluster. (image credit: NASA, ESA, STScI) 34) 35) 36)

Legend to Figure 25: The sparkling centerpiece of Hubble's anniversary fireworks is a giant cluster of about 3,000 stars called Westerlund 2, named for Swedish astronomer Bengt Westerlund who discovered the grouping in the 1960s. The cluster resides in a raucous stellar breeding ground known as Gum 29, located 20,000 light-years away from Earth in the constellation Carina.

The giant star cluster is only about two million years old, but contains some of the brightest, hottest and most massive stars ever discovered. Some of these are carving deep cavities in the surrounding material through their intense ultraviolet light and the high-speed charged particles contained in their stellar winds.

This image is a testament to Hubble's observational power and demonstrates that, even with 25 years of operations under its belt, its story is by no means over. Hubble has set the stage for the James Webb Space Telescope – scheduled for launch in 2018 – but will not be immediately replaced by this next-generation observatory, instead working alongside it. Now, 25 years after launch, is the time to celebrate Hubble's future potential as well as its remarkable history.

• November 2, 2015: Eerie, dramatic new pictures from NASA's Hubble Space Telescope show newborn stars emerging from "eggs" - not the barnyard variety - but rather dense, compact pockets of interstellar gas called evaporating gaseous globules (EGGs). Hubble found the "EGGs," appropriately enough, in the Eagle nebula, a nearby star-forming region 6,500 light- years away in the constellation Serpens (Figure 26). 37)

- "For a long time astronomers have speculated about what processes control the sizes of stars - about why stars are the sizes that they are," said Jeff Hester of Arizona State University, Tempe, AZ. "Now in M16 we seem to be watching at least one such process at work right in front of our eyes."

- Striking pictures taken by Hester and co-investigators with Hubble's Wide Field and Planetary Camera 2 (WFPC2) resolve the EGGs at the tip of finger-like features protruding from monstrous columns of cold gas and dust in the Eagle nebula (also called M16 - 16th object in the Messier catalog). The columns - dubbed "elephant trunks" - protrude from the wall of a vast cloud of molecular hydrogen, like stalagmites rising above the floor of a cavern. Inside the gaseous towers, which are light-years long, the interstellar gas is dense enough to collapse under its own weight, forming young stars that continue to grow as they accumulate more and more mass from their surroundings.

- Hubble gives a clear look at what happens as a torrent of ultraviolet light from nearby young, hot stars heats the gas along the surface of the pillars, "boiling it away" into interstellar space - a process called "photoevaporation. "The Hubble pictures show photoevaporating gas as ghostly streamers flowing away from the columns. But not all of the gas boils off at the same rate. The EGGs, which are denser than their surroundings, are left behind after the gas around them is gone.

- "It's a bit like a wind storm in the desert," said Hester. "As the wind blows away the lighter sand, heavier rocks buried in the sand are uncovered. But in M16, instead of rocks, the ultraviolet light is uncovering the denser egg-like globules of gas that surround stars that were forming inside the gigantic gas columns."

- Some EGGs appear as nothing but tiny bumps on the surface of the columns. Others have been uncovered more completely, and now resemble "fingers" of gas protruding from the larger cloud. (The fingers are gas that has been protected from photoevaporation by the shadows of the EGGs). Some EGGs have pinched off completely from the larger column from which they emerged, and now look like teardrops in space.

- By stringing together these pictures of EGGs caught at different stages of being uncovered, Hester and his colleagues from the Wide Field and Planetary Camera Investigation Definition Team are getting an unprecedented look at what stars and their surroundings look like before they are truly stars.

- "This is the first time that we have actually seen the process of forming stars being uncovered by photoevaporation," Hester emphasized. "In some ways it seems more like archaeology than astronomy. The ultraviolet light from nearby stars does the digging for us, and we study what is unearthed."

- "In a few cases we can see the stars in the EGGs directly in the WFPC2 images," says Hester. "As soon as the star in an EGG is exposed, the object looks something like an ice cream cone, with a newly uncovered star playing the role of the cherry on top."

- Ultimately, photoevaporation inhibits the further growth of the embyronic stars by dispersing the cloud of gas they were "feeding" from. "We believe that the stars in M16 were continuing to grow as more and more gas fell onto them, right up until the moment that they were cut off from that surrounding material by photoevaporation," said Hester.

Hubble_Auto3

Figure 26: Gas Pillars in the Eagle Nebula (M16): Pillars of Creation in a star-forming region (image credit: NASA, ESA, STScI, J. Hester and P. Scowen (Arizona State University))

 

Super Nova SN 1987A in the Large Magellanic Cloud

Thirty years ago, on 23 February 1987, the light from a stellar explosion marking the death of a massive star arrived at Earth to shine in Southern Hemisphere skies. Located in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, SN 1987A was the closest observed supernova to Earth since the invention of the telescope. Studying it for the last 30 years has revolutionized our understanding of the explosive death of massive stars. 38)

- In operation since 1990, the NASA/ESA Hubble Space Telescope has observed the supernova remnant many times, as highlighted in this montage of Figure 27. The images show its evolution between 1994 and 2016, and highlight the main ring that blazes around the exploded star.

Hubble_Auto2

Figure 27: Hubble follows the evolution of an expanding supernova remnant over three decades (image credit: NASA, ESA and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation) and P. Challis (Harvard-Smithsonian Center for Astrophysics)

A new wide-field image(Figure 28) was also taken by Hubble in January 2017 to mark the 30 year anniversary. By observing the expanding remnant material over the years, Hubble has helped to show that the material within the ring was likely ejected 20,000 years before the actual explosion took place.

The initial burst of light from the supernova initially illuminated the rings. They slowly faded over the first decade after the explosion, until a fast-moving shell of gas ejected during the supernova slammed into the central ring, sending a powerful shockwave through the gas, heating it to searing temperatures and generating strong X-ray emission.

This caused clumps of denser gas within the ring to light up like a string of pearls, seen as the increasing number of bright spots, which are now fading again. As the shock wave continues to move through the shells ejected by the dying star in its final throes of life, who knows what new details will be revealed?

Since its launch in 1990 Hubble has observed the expanding dust cloud of SN 1987A several times and this way helped astronomers to create a better understanding of these cosmic explosions.

Supernova 1987A is located in the center of the image amidst a backdrop of stars. The bright ring around the central region of the exploded star is composed of material ejected by the star about 20,000 years before the actual explosion took place. The supernova is surrounded by gaseous clouds. The clouds' red color represents the glow of hydrogen gas.

The colors of the foreground and background stars were added from observations taken by Hubble's WFPC2 ( Wide Field Planetary Camera 2).

Hubble_Auto1

Figure 28: This new image of the supernova remnant SN 1987A was taken by the NASA/ESA Hubble Space Telescope in January 2017 using its WFC3 (Wide Field Camera 3), image credit: NASA, ESA, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation) and P. Challis (Harvard-Smithsonian Center for Astrophysics)

 

• This comparison image of the core of galaxy M100 shows the dramatic improvement in the Hubble telescope's view of the universe of the universe after the first Hubble Servicing Mission in December 1993. The new image (right) was taken with the second generation Wide Field and Planetary Camera (WFPC2), which was installed during the STS-61 Hubble Servicing Mission. 39)

Hubble_Auto0

Figure 29: These before-and-after images of spiral galaxy M100 (NGC 4321) show the extent of Hubble's pre-servicing blur and exactly how well the fix worked (image credit: NASA)

Legend to Figure 29: This picture beautifully demonstrates that the camera's corrective optics compensate fully for the optical aberration in Hubble's primary mirror. With the new camera, the Hubble explored the universe with unprecedented clarity and sensitivity, and fulfilled its most important scientific objectives for which the telescope was originally built. 40)

Right: The core of the grand design spiral galaxy M100, as imaged by Hubble Space Telescope's Wide Field Planetary Camera 2 in its high resolution channel. The WFPC-2 contains modified optics that correct for Hubble's previously blurry vision, allowing the telescope for the first time to cleanly resolve faint structure as small as 30 light-years across in a galaxy which is tens of millions of light years away. The image was taken on December 31, 1993.

Left: For comparison, a picture taken with the WFPC-1 camera in wide field mode, on November 27, 1993, just a few days prior to the STS-61 servicing mission. The effects of optical aberration in HST's 2.4-meter primary mirror blur starlight, smear out fine detail, and limit the telescope's ability to see faint structure. Both Hubble images are "raw;" they have not been subject to computer image reconstruction techniques commonly used in aberrated images made before the servicing mission.

Target Information of M100: The galaxy M100 (100th object in the Messier Catalog of non-stellar objects) is one of the brightest members of the Virgo Cluster of galaxies. The galaxy is in the spring constellation Coma Berenices and can be seen through a moderate-sized amateur telescope. M100 is spiral shaped, like our Milky Way, and tilted nearly face-on as seen from earth. The galaxy has two prominent arms of bright stars and several fainter arms. Though the galaxy is estimated to be tens of millions of light-years away, Hubble reveals the sort of detail only seen previously (with ground based telescopes) in neighboring galaxies that are ten times closer. Before HST, astronomers could only see such a level of detail in roughly a dozen galaxies in our Local Group. Now, with Hubble's improved vision, the portion of the universe which can be studied with such clarity has grown a thousand fold. Only the future will tell what revelations await as Hubble's spectacular vision is applied to a host of fascinating and important questions about the universe and our place in it.

 


1) "About the Hubble Space Telescope," NASA URL: https://www.nasa.gov/mission_pages/hubble/story/index.html

2) Gabriel Okolski , "A Brief History of the Hubble Space Telescope," NASA, April 2008, URL: https://history.nasa.gov/hubble/

3) "How the Hubble Space Telescope changed the cosmos," Astronomy, URL: http://www.astronomy.com/bonus/hubble

4) Rob Garner, "Hubble Space Telescope Science Instruments," NASA, 12 December 2017, URL: https://www.nasa.gov/content/goddard/
hubble-space-telescope-science-instruments

5) John W. MacKenty, Randy A. Kimble, Robert W. O'Connell, Jacqueline A. Townsend, "On-orbit performance of the HST Wide Field Camera 3," Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave," edited by Jacobus M. Oschmann Jr., Mark C. Clampin, Howard A. MacEwen, Proceedings of SPIE, Vol. 7731, doi: 10.1117/12.857533, URL: https://archive.stsci.edu/prepds
/wfc3ers/spie_mackenty_2010.pdf

6) "A failed supernova?,"ESA, 13 July 2018, URL: http://m.esa.int/spaceinimages
/Images/2018/07/A_failed_supernova

7) "Burst of Celestial Fireworks," NASA, 3 July 2018, URL: https://www.nasa.gov/image-
feature/burst-of-celestial-fireworks

8) Ashley G. Smart, "Machine learning solves an exoplanet atmosphere," Physics Today, 25 June 2018, URL: https://tinyurl.com/ydh8o777

9) Pablo Márquez-Neila, Chloe Fischer, Raphael Sznitman, Kevin Heng, "Supervised machine learning for analysing spectra of exoplanetary atmospheres," Nature Astronomy, 25 July 2018, URL of abstract: https://www.nature.com/articles/s41550-018-0504-2

10) "Dance of the asteroids:Nearby asteroids photobomb distant galaxies," ESA Space Science Image of the Week, 25 June 2018, URL:http://m.esa.int/spaceinimages/Images/2018/06/Nearby_asteroids_photobomb_distant_galaxies

11) "Hubble proves Einstein correct on galactic scales (heic1812)," ESA, 21 June 2018, http://sci.esa.int/hubble/60441-hubble-proves
-einstein-correct-on-galactic-scales-heic1812/

12) Thomas E. Collett, Lindsay J. Oldham, Russell J. Smith, Matthew W. Auger, Kyle B. Westfall, David Bacon, Robert C. Nichol, Karen L. Masters, Kazuya Koyama, Remco van den Bosch, "A precise extragalactic test of General Relativity," Science, Vol. 360, Issue 6395, pp. 1342-1346, 22 Jun 2018, DOI: 10.1126/science.aao2469

13) "Cosmic collision lights up the darkness [heic1811]," ESA, 31 May 2018, URL: http://sci.esa.int/hubble/60372-
cosmic-collision-lights-up-the-darkness/

14) "Hubble spots a green cosmic arc," NASA, 1 June 2018, URL: https://www.nasa.gov/image-feature/goddard
/2018/hubble-spots-a-green-cosmic-arc

15) "Hubble shows the local Universe in ultraviolet," Hubble Space Telescope, HEIC (Hubble European Space Agency Information Center) 1810, 17 May 2018, URL: http://www.spacetelescope.org/news/heic1810/
?utm_source=feedburner&utm_medium=feed
&utm_campaign=Feed%3A
+hubble_news+%28Hubble+News%29

16) "Astronomers Release Most Complete Ultraviolet-Light Survey of Nearby Galaxies," Hubblesite, 17 May 2018, URL: http://hubblesite.org/news_release/news/2018-27

17) "A spiral disguised," ESA, 16 May, 2018, URL: http://m.esa.int/spaceinimages/Images
/2018/05/A_spiral_disguised

18) "Hubble detects helium in the atmosphere of an exoplanet for the first time [heic1809]," ESA, 02 May 2018, URL: http://sci.esa.int/hubble/60245-hubble-detects
-helium-in-the-atmosphere-of
-an-exoplanet-for-the-first-time-heic1809/

19) J. J. Spake, D. K. Sing, T. M. Evans, A. Oklopčić, V. Bourrier, L. Kreidberg, B. V. Rackham, J. Irwin, D. Ehrenreich, A. Wyttenbach, H. R. Wakeford, Y. Zhou, K. L. Chubb, N. Nikolov, J. M. Goyal, G. W. Henry, M. H. Williamson, S. Blumenthal, D. R. Anderson, C. Hellier, D. Charbonneau, S. Udry, N. Madhusudhan, "Helium in the eroding atmosphere of an exoplanet," Nature, Volume 557, pages68–70, Published online 02 May 2018, doi:10.1038/s41586-018-0067-5

20) "Hubble's 28th birthday picture: The Lagoon Nebula," Hubble Space Telescope, 19 April 2018, URL: https://www.spacetelescope.org/images/heic1808a/

21) "A colossal cluster," ESA, 10 April 2018, URL: http://m.esa.int/spaceinimages
/Images/2018/04/A_colossal_cluster

22) "Hubble Catches a Colossal Cluster," NASA, 13 April, 2018, URL: https://www.nasa.gov/image-feature/goddard
/2018/hubble-catches-a-colossal-cluster

23) "Hubble uses cosmic lens to discover most distant star ever observed [heic1807]," ESA, 02 April 2018, URL: http://sci.esa.int/hubble/60140-hubble-uses-cosmic-lens
-to-discover-most-distant-star-ever-observed-heic1807/

24) "The curious case of calcium-rich supernovae," ESA, 30 March 2018, URL: http://m.esa.int/spaceinimages/Images/2018/03
/The_curious_case_of_calcium-rich_supernovae

25) Steven K. Blau, "A galaxy with surprisingly little dark matter," Physics Today, 2 April 2018, URL: https://tinyurl.com/yargmbuf

26) "Hubble finds first galaxy in the local Universe without dark matter [heic1806]," ESA, 28 March 2018, URL: http://sci.esa.int/hubble/60113-hubble-finds-first-
galaxy-in-the-local-universe-without-dark-matter-heic1806/

27) Pieter van Dokkum, Shany Danieli, Yotam Cohen, Allison Merritt, Aaron J. Romanowsky, Roberto Abraham, Jean Brodie, Charlie Conroy, Deborah Lokhorst, Lamiya Mowla, Ewan O'Sullivan, Jielai Zhang, "A galaxy lacking dark matter," Nature, Volume 555, pages 629–632, Published 28 March 2018, doi:10.1038/nature25767

28) "Hubble celebrates 27 years with two close friends [heic1709]," ESA, April 20, 2017, URL: http://sci.esa.int/hubble/59018-hubble-celebrates
-27-years-with-two-close-friends-heic1709/

29) "A New Angle on Two Spiral Galaxies for Hubble's 27th Birthday," NASA, April 20, 2017, URL: https://www.nasa.gov/feature/goddard/2017/a-new
-angle-on-two-spiral-galaxies-for-hubbles-27th-birthday

30) "Hubble 25," ESA, April 23, 2015, URL: http://www.esa.int/spaceinimages/Images/2015/04/Hubble_25_without_title

31) Tony Phillips, "Handprints on Hubble," NASA, June 26, 2015, URL: http://science.nasa.gov/science-news
/science-at-nasa/2015/26jun_handprints/

32) Felicia Chou, Donna Weaver, Ray Villard. "NASA Unveils Celestial Fireworks as Official Image for Hubble 25th Anniversary," NASA, Release 15-066, April 23, 2015, URL: https://www.nasa.gov/press-release/nasa-unveils-celestial
-fireworks-as-official-image-for-hubble-25th-anniversary

33) "Celebrating Hubble's silver anniversary," ESA, 23 April 2015, URL: http://m.esa.int/spaceinimages/Images/2015
/04/Celebrating_Hubble_s_silver_anniversary

34) Felicia Chou, Donna Weaver, Ray Villard. "NASA Unveils Celestial Fireworks as Official Image for Hubble 25th Anniversary," NASA, Release 15-066, April 23, 2015, URL: http://www.nasa.gov/press-release/nasa-unveils-celestial
-fireworks-as-official-image-for-hubble-25th-anniversary

35) "Celestial Fireworks celebrate Hubble's 25th Anniversary," ESA, April 23, 2015, URL: http://www.esa.int/Our_Activities/Space_Science/
Celestial_fireworks_celebrate_Hubble_s_25th_anniversary

36) "Hubble Space Telescope Celebrates 25 Years of Unveiling the Universe," STCcI, April 23, 2015, News release: STScI-2015-12, URL: http://hubblesite.org/newscenter
/archive/releases/2015/12/image/a/

37) "Embryonic Stars Emerge from Interstellar "Eggs"," Hubblesite, News Release number: STScI-1995-44, 2 Nov. 2015, URL: http://hubblesite.org/news_release/news/1995-44

38) "The evolution of SN 1987A," ESA, Space Science Image of the Week, February 27, 2017, URL: http://m.esa.int/spaceinimages/Images
/2017/02/The_evolution_of_SN_1987A

39) "Picture Perfect: Hubble's New Improved Optics Probe the Core of a Distant Galaxy," Hubblesite, Release 1025 of January 13, 1994, URL: http://hubblesite.org/news_release/news/1994-01

40) "M100 Galactic Nucleus: Pictures of Galaxy M100 with Hubble's Old and New Optics," Hubblesite, News release ID: STScI-1994-01, Release Date: Jan 13, 1994, URL: http://hubblesite.org/image/123/news_release/1994-01
 


The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: "Observation of the Earth and Its Environment: Survey of Missions and Sensors" (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (herb.kramer@gmx.net).

Background   Sensor Complement   HST Imagery   References   Back to Top