Minimize GOES-R (Geostationary Operational Environmental Satellite-R)

GOES-R (Geostationary Operational Environmental Satellite-R) 3rd Generation Series

Space Segment   Launch   Mission Status   Sensor Complement   Ground Segment   References

The next-generation (3rd) geostationary weather satellite family of NOAA, under development at NOAA and at NASA, will start with the GOES-R spacecraft and its newly defined sensor complement. Obviously, such an undertaking, truly of decadal dimension, represents a great challenge for any organization, since it involves the development of new space and ground segments, along with observation instruments, of spacecraft, new operation procedures and data processing algorithms - all on the basis of state-of-the-art technology, demanding user requirements, and available funding resources.

GOES-R is a collaborative development and acquisition effort between NOAA and NASA. The overall GOES Program is managed by NOAA of DOC (Department of Commerce), which establishes requirements, provides funding, and distributes environmental data for the United States. DOC is the approval authority for the GOES-R budget, Ground Segment Project procurement and overall program acquisition strategy. NOAA is accountable to DOC for successful GOES-R development and operational mission success. - NASA/GSFC is teaming with NOAA to manage the design and development of the spacecraft series and its sensor complement. Program activities occur at the co-located Program and Project Offices at Goddard Space Flight Center (GSFC), Greenbelt, MD.

The definition/requirements phase of the next-generation project started in 2000. The first GOES users conference followed in 2001 (May 22-24, 2001, Boulder CO). A major science objective is to provide considerably improved observation capabilities, relative to the GOES-I-M-O-P series, in four key areas: a) spatial resolution, b) spectral coverage and resolution, c) temporal refreshment rates (also detection, change diagnosis, and tracking of hurricanes), and d) radiometric sensitivity. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)

The 3rd generation GOES spacecraft series will provide critical atmospheric, hydrologic, oceanic, climatic, solar, and space data. Additional capabilities include improved direct services, such as: GBR (GOES-R Re-Broadcast), S&R (Search & Rescue), DCS (Data Collection System), EMWIN (Emergency Managers Weather Information Network), and LRIT (Low Rate Information Transmission) communications.

The goals of the GOES-R mission are:

• Maintain continuous, reliable operational environmental, and storm warning systems to protect life and property

• Monitor the Earth's surface and space environmental and climate conditions

• Introduce improved atmospheric and oceanic observations and data dissemination capabilities (increased spatial, temporal and spectral resolution)

• Develop and provide new and improved applications and products for a wide range of federal agencies, state and local governments, and private users.

The GOES R system is planned to operate for a period of at least 14 years (design life), providing a remote sensing capability to acquire and disseminate regional environmental imagery and specialized meteorological, climatic, terrestrial, oceanographic, solar-geophysical and other data to central processing centers and distributed direct users. GOES R will operate with improved latency, full hemispheric coverage, including the periods of eclipse at the vernal equinoxes.

An overall consolidated architecture (space segment and ground segment) is considered that can evolve with time to meet at least some of the growing performance requirements of the user community in such service fields as data distribution and analysis.


Figure 1: NOAA continuity of the GOES operational satellite program as of June 2016 (image credit: NOAA) 12)


Figure 2: Artist's view of the GOES-R spacecraft in orbit (image credit: NASA, NOAA, LM)

The GOES-R space segment:

The GOES-R space segment consists of a constellation of one or more satellites each nominally located at 75º West longitude (East location) and at 137º West longitude (West location) at geostationary altitude (~35,786 km), 0º inclination. 13)

The GOES-West location in the GOES-R series is to be 137º W instead of current 135º W -this eliminates conflicts with other satellite systems in X-band frequency at 135º W. During the on-orbit storage period, the satellites will be positioned at 105º West longitude and a Launch/Check-out position is reserved at 90º West longitude. 14) 15)


Figure 3: Illustration of the GOES-R series spacecraft locations (image credit: GOES-R Program Office)

Mission orbit

GEO 75º W and 137º W longitude (and possible 105º W for reduced operations)



Launch vehicle

EELV medium

Launch date

2015 (launch of first spacecraft)

Constellation size

1 spacecraft cluster at each orbital slot

System availability

> 0.82

Mission lifetime

Data and products until year 2030

Spacecraft design life

15 years (10 operational, after 5 years on-orbit spare)

RF communications

Collect and transmit up to 100 Mbit/s instrument payload data from each location continuously


Continuous rebroadcast function at L-band up to 31 Mbit/s utilizing dual polarization

Data collection, rescue

Provide improved continuing services (Search & Rescue, Data Collection, Emergency Manager’s Weather Information Network (EMWIN))

Table 1: Mission requirements for GOES-R 3rd generation spacecraft series

In December 2008, NASA, in coordination with NOAA, selected Lockheed Martin Space Systems Company of Denver to build the GOES-R series spacecraft. The contractor will design, develop and deliver the GOES-R series of spacecraft and provide pre-launch, launch and post-launch support. Lockheed will design and develop the spacecraft in its Newtown PA, Sunnyvale CA, and Denver CO facilities. 16) 17) 18)

In May 2009, NOAA and NASA presented a re-evaluation of the previous contract award resulting in a series of corrective actions. The basic contract is for two satellites with options for two additional satellites. 19)

GOES-R solution builds upon a derivative of the renowned A2100 geosynchronous spacecraft bus (a commercial-type bus with considerable space heritage) and proven precision imaging capabilities from previous remote sensing programs. The satellite dry mass (spacecraft and payloads) is estimated to be < 2800 kg; power capability > 4 kW (EOL). 20) 21)


Figure 4: GOES-R spacecraft configuration (image credit: NASA, NOAA, LM)

On Nov. 9, 2012, the GOES-R Program successfully passed the Mission Critical Design Review (MCDR). 22)

C&DH (Command and Data Handling) subsystem: C&DH serves as the hub for all data received by and sent from the spacecraft. The CCSDS (Consultative Committee for Space Data Systems) recommendations for both packet telemetry and telecommand communications are being implemented.

The SpaceWire bus was selected as the best solution for on-board high-speed communications. GOES-R instrument-to-spacecraft data rates are between 10 and 100 Mbit/s. Also, error detection and correction, at the source packet level, is needed. Early in the GOES-R development program, a decision was made to develop a GOES-R specific SpaceWire technology to aid in cost and risk reduction. In response to this direction reference hardware and software solutions have been fully developed and verified to be compliant with the SpaceWire standard and GOES-R Project requirements. A SpaceWire ASIC (Application Specific Integrated Circuit) was developed by BAE (British AeroSpace). 23) 24)

GOES-R project has developed a Reliable Data Delivery Protocol (GRDDP) that is based on SpaceWire capabilities for link connection and re-connection, error detection, virtual channels and routing. This protocol has been presented to and accepted by the SpaceWire Working Group and assigned a Protocol ID (PID) 238. GRDDP, also known as PID 238, does not attempt to duplicate or improve on the considerable capabilities provided by SpaceWire. This protocol builds on top of SpaceWire the ability to recover lost packets, reorder packets, and to ensure to higher level processes that packets are as error free as possible. 25)

The GOES-R requirements for PID 238 are to utilize the SpaceWire capabilities to provide a packet delivery protocol that is able to detect and recover lost packets. The protocol is also required to be flexible so that it can be adapted as needed to different host data throughput requirements and resources. PID 238 intentionally does not specify an implementation. It defines a set of capabilities, but does not require that all capabilities be implemented for all applications.

Of the 5 GOES-R instruments, 2 have implemented PID 238 in FPGAs, and the other three have implemented the protocol in software on the embedded microcontroller in the BAE SpaceWire ASIC. Each of the GOES-R instruments are implementing the SpaceWire and PID 238 interface as a point-to-point architecture. Modeling the proposed spacecraft data system has shown no changes are required in any instrument implementation including the addition of several SpaceWire routers.

The most simple instrument with very small data throughput requirements and minimal processor resources, the largest instrument with the highest data throughput requirements, and the spacecraft C&DH that interfaces to them all have implemented PID 238 to the same specification. All of the instruments as well as the spacecraft recognize a common method for detecting and recovering data link errors and lost packets.

GOES-R instrument data rates ranging from 50kb to 66MHz are easily managed by the combination of PID 238 over SpaceWire. Many parameters of PID 238 can be tuned to match the reliability requirements and a node’s ability to support the required complexity. PID 238 has proven able to adapt to those capabilities and data rates due to its inherent flexibility. PID 238 is documented and extensively tested. It is available and ready to be applied to SpaceWire applications (Ref. 25).


Figure 5: Simplified spacecraft design with multiple SpaceWire routers (image credit: NASA, Ref. 25)

RF communications:

• HRIT (High Rate Information Transmission).

• LRIT (Low Rate Information Transmission). The LRIT service evolves from the current WEFAX system which provides a wide dissemination of GOES imagery and other data at the relatively low information rate of 128 kbit/s. The LRIT has a requirement to upgrade the user information rate to 256 kbit/s.

• EMWIN (Emergency Managers Weather Information Network). A service provided though a transponder onboard the GOES satellite. EMWIN is a suite of data access methods that make available a live stream of weather and other critical information to Local Emergency Managers and the Federal Emergency Management Agency (FEMA).

• GRB (GOES Re-Broadcast) services. GRB provides processed mission data to the user community. Raw data from the environmental sensors is processed into calibrated navigated data sets at the receive site. The processed data is then uplinked to GOES for broadcast to users within view of the satellite.


Figure 6: GOES-R mission interfaces (image credit: NOAA, NASA) 26)


Figure 7: Illustration of the deployed GOES-R spacecraft (image credit: NOAA, NASA) 27)

GOES-R and the GOES-R series development status (program milestones):

• July 1, 2019: GOES-U, scheduled to launch in late 2024, won’t be an exact replica of its siblings in the GOES-R Series. That’s because GOES-U will accommodate an additional space weather instrument, the Naval Research Laboratory’s Compact Coronagraph (CCOR). CCOR recently completed its Critical Design Review, which affirmed that the design meets requirements and is ready to proceed with full-scale fabrication, assembly, integration and test. CCOR will image the solar corona (the outer layer of the sun’s atmosphere) and help detect and characterize CMEs (Coronal Mass Ejections). 28)


Figure 8: Model of CCOR (image credit: Naval Research Laboratory)

- CCOR will provide critical space weather measurements for the NOAA SPWC (Space Weather Prediction Center). CCOR will image the solar corona (the outer layer of the sun’s atmosphere) and help detect and characterize CMEs. CMEs are large expulsions of plasma and accompanying magnetic field from the corona. They can be remotely detected with white light imagery of the upper solar corona and CCOR is designed to capture this white light imagery. Sequences of CME images can be used to determine size, velocity, and density of CMEs. CME imagery is currently the only source of 1+ day watches of impending geomagnetic storm conditions.

- Geomagnetic storms are major disturbances of Earth’s magnetosphere caused by shock waves in the solar wind. Geomagnetic storms are the costliest type of space weather events as they can cause widespread damage to power grids, satellites, and communication and navigation systems. CMEs are the primary cause of geomagnetic storms.

- Currently, CME imagery at the Earth-sun line is provided by the Large Angle and Spectrometric Coronagraph (LASCO) instrument on board the European Space Agency (ESA)/NASA Solar and Heliospheric Observatory (SOHO) satellite, launched in 1995. As part of NOAA’s Space Weather Follow-On Program, CCOR was developed at the Naval Research Laboratory to ensure continuity of critical CME imagery. The first CCOR instrument will fly on GOES-U and subsequent CCORs will fly on other missions. CCOR-1 was optimized for geostationary orbit and for GOES-U interfaces.

- CCOR-1 will reside on GOES-U’s Solar Pointing Platform, along with the Solar Ultraviolet Imager (SUVI) and Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS). CCOR was designed to meet NOAA’s observational requirements. CCOR will deliver imagery within 30 minutes of acquisition, compared to up to 8 hours from LASCO. CCOR will capture at least two images of each CME and will be capable of operating during intense solar storms and flares. The addition of CCOR to GOES-U will enhance NOAA’s space weather observational capabilities and improve forecasts.

• April-June 2019: GOES-T has a new launch date. The NOAA/NASA Agency Program Management Council approved a new launch commitment date in May and the program is planning for a December 2021 launch. Design changes to the ABI loop heat pipes to address thermal control issues detected on GOES-16 and -17, and parts issues with the Geostationary Lightning Mapper (GLM) required the GOES-R Program to re-plan the GOES-T schedule. The delay does not impact the overall availability of imaging from geostationary orbit; the operational satellites within NOAA’s geostationary constellation – GOES-17 as GOES West, GOES-16 as GOES East, and GOES-14 as the on-orbit spare – continue to deliver key Earth and space weather observations for the nation. The delay also does not increase the risk of a gap in the constellation. GOES-T, when it is launched, is planned to go into on-orbit storage and thus the delay only affects the length of the storage time and not its operational service. 29)

• January 25, 2018: Top officials from NOAA, NASA and the California Department of Forestry and Fire Protection will hold a media teleconference to discuss how NOAA’s GOES-S, the second in a series of next-generation geostationary weather satellites, will help provide faster, more accurate data for tracking lightning, storm systems, wildfires, dense fog and other hazards that threaten the western U.S., Hawaii and Alaska. 30)


Figure 9: Inspection of the GOES-S spacecraft, the second in NOAA's series of next-generation geostationary weather satellites (image credit: NOAA)

• December 9, 2017: NOAA’s GOES-S satellite arrived safely at NASA's Kennedy Space Center Shuttle Landing Facility, Florida, to prepare for its launch planned for March 1, 2018. GOES-S was shipped from Lockheed Martin Space Systems, Littleton, Colorado, on Dec. 4 aboard a U.S. Air Force C-5M Super Galaxy cargo transport. 31)

- After its arrival, the GOES-S spacecraft was pulled from its shipping container, and is now undergoing additional testing and preparation for encapsulation on top of the rocket that will take it to its geostationary orbit of 35,786 km above Earth.

- “This is a major milestone for the GOES-S team. GOES-16, its sister satellite, is about to become operational and is proving to be a game-changer for weather forecasting and environmental hazard assessment,” said Tim Walsh, acting system program director for the GOES-R Series Program at NASA's Goddard Space Flight Center in Greenbelt, Maryland. “We are excited to get GOES-S into orbit and extend the area covered by this revolutionary new technology.”

- GOES-S is scheduled to launch aboard an Atlas V 541 rocket from Cape Canaveral Air Force Station in Florida. GOES-S will have a mass of ~4,990 kg at launch.

- GOES-S is the second satellite in NOAA’s GOES (Geostationary Operational Environmental Satellites) series, which includes GOES-R, GOES-S, GOES-T and GOES-U. GOES satellites are designated with a letter prior to launch and a number once they achieve geostationary orbit. GOES-R, the first satellite in the series, launched in November 2016 and is now GOES-16. GOES-16 will take its place as NOAA’s GOES-East satellite later this month, keeping an eye on the continental United States and the Atlantic Ocean.

- GOES-S will be designated GOES-17 upon reaching geostationary orbit. After a period of on-orbit test and checkout, GOES-17 will be operational as GOES-West, providing coverage of the western U.S., Alaska, Hawaii and the Pacific Ocean. An operational GOES-17 will give the Western Hemisphere two next-generation geostationary environmental satellites. Together, GOES-16 and GOES-17 will observe Earth from the west coast of Africa all the way to Guam.

- Like the other satellites in the series, GOES-S carries a suite of sophisticated Earth-sensing, lightning-detecting, solar imaging and space weather monitoring instruments. The advanced technology on board GOES-S will provide critical data and imagery in near-realtime on severe weather events such as thunderstorms, tornadoes, hurricanes and flash floods, as well as hazards like fog, aerosols, dust storms, volcanic eruptions and forest fires.

- The GOES-R Series is a collaborative acquisition and development effort between NOAA and NASA to develop, launch and operate the satellites. NOAA manages the GOES satellites while NASA oversees the acquisition of the spacecraft and instruments in addition to the management of the launch service through NASA’s Launch Services Program based at the agency's Kennedy Space Center in Florida.


Figure 10: GOES-S now resides in a clean room at Astrotech Space Operations in Titusville, Florida, where it will undergo preparations for launch (image credit: NOAA/NASA, Michael Starobin)

• August 3, 2017: Progress continues on the development of NOAA's GOES-S and GOES-T spacecraft that will follow the successful launch of GOES-16 last November. The GOES-S satellite is fully integrated and is currently undergoing its final functional testing to confirm it successfully passed mechanical and thermal environmental testing. Advancement has also been made in the assembly of the third satellite of the GOES-R series, GOES-T. Five of its instruments were delivered to the Lockheed Martin facility in Littleton, Colorado. The majority of the spacecraft avionics have been integrated to the GOES-T system module and functional testing is underway. 32)

• Dec. 20, 2016: Lockheed Martin has completed assembly of NOAA's GOES-S weather satellite and is now beginning critical mechanical and environmental testing of the spacecraft. GOES-S is the second of four next-generation geostationary weather satellites called the GOES-R series, and will provide a major improvement in our nation's weather observation capabilities leading to more accurate and timely forecasts, watches and warnings. 33)

- The GOES-S satellite is now undergoing environmental testing to simulate the conditions of launch and the extreme environment the satellite will experience in space. It recently completed a reverberant acoustics test and sine vibration test, both designed to expose the satellite to the sound and vibrations of a launch on a United Launch Alliance Atlas V 541 rocket.

- "Mechanical and environmental testing is an important time for the program," said Tim Gasparrini, vice president and GOES-R Series program manager at Lockheed Martin Space Systems. "This period validates the satellite's overall design, assembly workmanship, and survivability during launch and on-orbit operation in the cold vacuum of space."

• Oct./Nov. 2016: The impact of deadly Cat 4 Hurricane Matthew on the Florida Space Coast on October 7, forced the closure of the vital Cape Canaveral Air Force Station (CCAFS) and the KSC (Kennedy Space Center) launch and processing vital facilities that ultimately resulted in a two week launch delay due to storm related effects and facilities damage.

- The launch of GOES-R is being rescheduled from November 16, 2016. The postponement was caused by the same minor Atlas V booster issue discovered on ULA's WorldView-4 mission scheduled to launch from Vandenberg Air Force Base. The team is actively working towards a resolution. NOAA will provide an update on a new launch date once it is established.

- Liftoff of the NASA/NOAA GOES-R weather satellite atop a United Launch Alliance (ULA) Atlas V rocket is now scheduled for Nov. 19, 2016. 34)

• Sept. 27, 2016: The fourth ABI (Advanced Baseline Imager) of Harris Corporation has completed a pre-ship review with NOAA (National Oceanic and Atmospheric Administration) and NASA. The instrument now is complete and will be ready for future integration onto the GOES-U (Geostationary Operational Environmental Satellite – U Series) spacecraft, which is part of NOAA’s next-generation weather satellite series. 35)

- ABI is the world’s most advanced geostationary weather instrument. It captures continuous images of Earth – scanning the entire globe in five minutes versus 26 minutes with the currently operational GOES satellites. For rapidly changing events like thunderstorms, hurricanes, or fires, ABI can take images as often as every 30 seconds. ABI also will provide images of conditions current GOES satellites cannot including dust, sea ice, volcanic ash, fog, clouds, water vapor, vegetation, winds and carbon dioxide.

- An international version of ABI is operational over Japan on board the Himawari-8 satellite, where it has tracked storms like Typhoons Nepartak and Soudelor. Harris has built seven ABIs: four for the United States, two for Japan, and one for South Korea. Harris also built the ground system for NOAA’s GOES-R series of satellites, which will command and control the satellites and all instruments on board, and process 60 times more data than today’s GOES satellites. The ground system will make it possible for meteorologists to receive critical weather data in 30 seconds by using a customized high-speed processing infrastructure designed to reduce information bottlenecks caused by the high data volume.

• August 26, 2016: NOAA's newest weather satellite, GOES-R, left its Colorado home where it was built and is now in Florida where it will undergo preparations for a Nov. 4 launch. On Aug. 22, Lockheed Martin shipped the next-generation satellite aboard an Air Force C-5M Super Galaxy cargo transport plane to its Astrotech Space Operations facility in Titusville, Florida. 36) 37) 38)


Figure 11: Lockheed Martin delivered NOAA's GOES-R weather satellite to its Florida launch site on Aug. 22, 2016. The spacecraft was shipped aboard a U.S. Air Force C-5M Super Galaxy cargo plane from Buckley Air Force Base, Colorado to NASA's Kennedy Space Center, Florida. The satellite will now undergo final processing in preparation for a November launch (image credit: Lockheed Martin, NOAA, Space Daily)

• May 11, 2016: The GOES-R team has begun a series of important rehearsals to simulate specific steps in the deployment of the satellite, such as spacecraft separation. Mission rehearsals use a satellite simulator to train operations personnel and test the readiness of the ground system. (The ground system is a global network of receiving stations linked to NOAA which distributes the satellite data and derived products to users worldwide). 39)

- These simulations help test different parts of launch, like orbit raising, post-separation events, solar array deployment, and propulsion system readiness. They simulate both nominal (normal) and contingency operations and are conducted at the NOAA Satellite Operations Facility (NSOF) in Suitland, Maryland. “Mission rehearsals are just that. They are practice for the main event, in this case, the launch of the GOES-R satellite,” said GOES-R Series Program Director, Greg Mandt. “By stepping through the engineering needed to operate the satellite, from the launch sequence to the operations of our ground system, we are ensuring our teams are prepared for launch across the board.”

- To date, GOES-R has completed two of six planned mission rehearsals. Four additional mission rehearsals will take place in the coming months and will simulate critical post-launch events like spacecraft separation from the launch vehicle, instrument activations and the magnetometer boom deployment.

• January 8, 2016: As NOAA's GOES-R satellite goes through mechanical testing in preparation for launch in October 2016, the remaining satellites in the series (GOES-S, T, and U) are also making significant progress. 40)

- All GOES-S instruments have been delivered for integration with the satellite and SUVI and EXIS are already installed on the sun-pointing platform. Significant progress has been made on the GOES-S spacecraft itself. Integration and test of the system module, the “brain” of the satellite, is complete. The “body” of the satellite, the core module comprising a majority of the structure and propulsion systems, was delivered in October. These modules were mated to form the spacecraft in late December.

• Nov. 5, 2015: The GOES-R Flight Operations Review (FOR) was held November 2–5, 2015 at the at the NOAA Satellite Operations Facility in Suitland, Maryland. The FOR was a milestone review in which the program presented its mission operations activities to an independent review team to demonstrate that compliance with all requirements have been verified and are able to execute all phases and modes of mission operations, data processing, and analysis. All criteria were rated "green" by the review board, reflecting the hard work the GOES-R team has put in to get this nationally important system ready for operations. 41)

• September 2015: The SUVI (Solar UV Imager) was the first GOES-S instrument to be delivered for integration with the satellite. SUVI was successfully installed on the GOES-S solar-pointing platform in September. Also in September, the EXIS (Extreme ultraviolet and X-ray Irradiance Sensors), ABI (Advanced Baseline Imager), and the SEISS instruments that will fly aboard GOES-S were delivered for integration.

• August 2015: Thermal vacuum testing of the GOES-R satellite, which began on July 1, concluded on August 24. During thermal vacuum testing, the satellite was subjected to extreme temperatures to simulate the harsh conditions of launch and the space environment. During the testing, the satellite experienced a vast range of temperatures, with some parts reaching 87ºC and others dropping as low as -55ºC.


Figure 12: The GOES-R satellite is shown post-testing after opening the thermal vacuum chamber door (image credit: Lockheed Martin, NOAA)

• June 3, 2015: Lockheed Martin has completed assembly of NOAA’s GOES-R weather satellite and is now beginning critical testing of the spacecraft. The first of four next-generation geostationary weather satellites, GOES-R will provide a major improvement in quality, quantity and timeliness of weather data collected over the current GOES (Geostationary Operation Environmental Satellite) system that monitors weather over North America. 42)


Figure 13: Lockheed Martin engineers and technicians test the deployment of the large GOES-R satellite solar array before the spacecraft undergoes environmental testing (image credit: Lockheed Martin)

• May 21, 2015: The GOES-R satellite, slated to launch in 2016, is ready for environmental testing. Environmental testing simulates the harsh conditions of launch and the space environment once the satellite is in orbit. The GOES-R satellite and its instruments will undergo a variety of rigorous tests which includes subjecting the satellite to vibration, acoustics and temperature testing as part of this process. 43)

- The environmental testing will take place at Lockheed Martin Corporation’s Littleton, Colorado, facility where the spacecraft is being built. The satellite will be placed inside a large (8.8 m x 19.8 m) vacuum chamber, where it will remain through late summer. During the thermal vacuum test, the satellite is exposed to the extreme hot and cold temperatures it will experience in space as it orbits the Earth with temperatures ranging from -15 ºC to 50 º Celsius. The satellite will also undergo vibration testing to simulate the experience of launching into space aboard a rocket, and electromagnetic testing to ensure it is properly protected from electromagnetic phenomena in space, like solar flares.

- “The start of the environmental testing period is a critically important time for the spacecraft,” said GOES-R Series Program Director, Greg Mandt. “This milestone marks the shift from the development and integration of the satellite to the final testing phases that will prepare the satellite for the rigors of space before its delivery to the launch location later this year.”

• Jan. 12, 2015: All six instruments that will fly on the NOAA’s Geostationary Operational Satellite – R (GOES-R) satellite have now completed integration onto the spacecraft. The instruments are: ABI, GLM, SEISS, EXIS, SUVI and MAG. Together, these instruments will offer significant improvements for the observation of both terrestrial weather and space weather that impact life on Earth. The completion of the instruments integration marks another critical step in the development of the GOES-R satellite, scheduled for launch in March 2016. 44)

• Oct. 9, 2014: The GLM (Geostationary Lightning Mapper) instrument for GOES-R completed development and testing and is now ready for integration with the spacecraft. 45)

• In September 2014, a team of technicians and engineers at Lockheed Martin has successfully mated together the large system and propulsion modules of the first GOES-R series weather satellite at the company’s Space Systems facilities in Littleton near Denver, Colorado. The system module of the A2100-based satellite houses more than 70 electronics boxes that comprise the three major electrical subsystems; command and data handling, communication, and electrical power. The propulsion core contains the integrated propulsion system and serves as the structural backbone of the satellite. 46) 47)

- With the core spacecraft completed, the team will begin installing the six weather and solar-monitoring instruments onto the satellite. All six GOES-R instruments were delivered to begin spacecraft integration. They are: ABI (Advanced Baseline Imager), EXIS (Extreme X-ray Irradiance Sensors), GLM (Geostationary Lightning Mapper), SEISS (Space Environment In-situ Suite), SUVI (Solar Ultraviolet Imager ), and the Magnetometer. Two instruments, EXIS and SUVI were installed on the sun-pointing platform of the spacecraft. 48)

• July 30, 2014: The GOES-R Series Program SIR (System Integration Review) was successfully held July 22–24, 2014 at Lockheed Martin Space Systems Corporation in Littleton, CO. The SIR determines if the flight and ground segments and components are available and ready to be integrated into the overall system. It also reviews whether the facilities, support personnel and integration plans and procedures are ready for integration. 49)

• May 2014: Propulsion Core Module delivered to Lockheed Martin, Denver. With the delivery of the system module and the propulsion module, the weather satellite will now undergo the important integration and testing phase so that it can be available in late 2015. 50) 51)

In addition to four satellites in the series (R, S, T and U), Lockheed Martin is also designing and building the SUVI (Solar Ultraviolet Imager) and the GLM (Geostationary Lightning Mapper) instruments that will each fly aboard each of the spacecraft. The SUVI was recently installed on the GOES-R satellite’s sun pointing platform.


Figure 14: The Propulsion Module (left) and System Module (right) of the first GOES-R series weather satellite arrived in Lockheed Martin’s cleanroom near Denver where they will now undergo integration and testing (image credit: Lockheed Martin)

• April 2014: The GOES-R spacecraft system module Pre-Shipment Review was held April 11 at Lockheed Martin’s facility in Newtown, PA. The system module was shipped on April 14 and arrived at Denver International Airport via C-17 large military transport aircraft late on April 15. It then safely completed its journey to Lockheed Martin’s Littleton, CO, facility by convoy on April 16.

• May 2012: GOES-R Weather Satellite Passes CDR (Critical Design Review). The week-long review included a series of comprehensive presentations from each of the system and subsystem subject matter experts representing all facets of the spacecraft. The team demonstrated that the design and operations are understood and sufficiently mature to begin the build and integration phase. 52)

Launch: The GOES-R satellite was launched on November 19, 2016 (23:42:00 UTC) on an Atlas-5 541 vehicle from the Cape Canaveral Air Force Station, FL. The launch provider is ULA (United Launch Alliance). The GOES-R is the first of the 3rd generation series (R, S, T, U) and its sensor complement are expected to provide continued and significantly improved observation services for a period of at least 22 years. 53) 54)

Orbit: Geostationary orbit, altitude = 35,786 km, longitude = 75º W (GOES East).

GOES-R series satellites will have two operational locations: 75º W and 137º W longitude. Any GOES-R series satellite stored on-orbit will be located at 105º W longitude. Once in geostationary orbit, GOES-R will be known as GOES-16.

Launch: The GOES-S satellite,the second in a new series of four highly advanced geostationary weather satellites, was launched on March 1, 2018 (22:02:00 UTC) on a ULA Atlas-V 541 vehicle configuration from CCAFS (Cape Canaveral Air Force Station) SLC-41 in Florida. 55) 56)

Orbit: Geostationary orbit, altitude = 35,786 km, longitude = 137º W (GOES West). 57)

Once GOES-S is positioned in a geostationary orbit 36,786 km above the Earth, after approximately two weeks, it will be renamed GOES-17. Later this year, after undergoing a full checkout and validation of its six high-tech instruments, the new satellite will move to the GOES-West position and become operational. From there, it will constantly provide advanced imagery and atmospheric measurements, real-time mapping of lightning activity, and improved monitoring of solar activity and space weather.

Figure 15: NOAA GOES-S (GOES-17) - High Definition GOES West! Working together with GOES-16, the two new geostationary weather satellites will provide constant watch over the United States and the Western Hemisphere from the west coast of Africa all the way to New Zealand, helping monitor severe storms, wildfires, and daily weather patterns (video credit: NOAA)


Figure 16: A ULA Atlas V rocket carrying the GOES-S mission for NASA and NOAA lifts off from Space Launch Complex-41 at CCAFS, Fl, (image credit: United Launch Alliance) 58)

Mission status:

• August 1, 2019: GOES-17 Mishap Investigation Board Study Completed. A Mishap Investigation Board appointed by NASA and NOAA (National Oceanic and Atmospheric Administration) has identified the most likely cause for an instrument issue aboard NOAA’s Geostationary Operational Environmental Satellite (GOES)-17 satellite that launched March 1, 2018 from Cape Canaveral Air Force Station in Florida. 59)

- During postlaunch testing of the satellite’s Advanced Baseline Imager (ABI), teams discovered the instrument’s infrared detectors could not be maintained at the required temperatures during some orbital conditions, which resulted in a partial loss of three of the instruments 16 bands during certain times of the year.

- The ABI is GOES-17’s primary instrument for imaging Earth’s weather, oceans, and environment. It views the Earth with 16 spectral bands including two visible, four near-infrared, and 10 infrared channels.

- The mishap board was tasked with gathering and analyzing information, and identifying the proximate causes, root causes, and contributing factors related to the ABI performance issues. It concluded the most likely cause of the ABI cooling issue is a blockage in the instrument’s loop heat pipes, which transfer heat from the ABI electronics to its radiator. The blockage restricted the flow of coolant in the loop heat pipes, causing the ABI to overheat and reducing the sensitivity of infrared sensors.

- NOAA and NASA have adjusted the instrument operations, and are working to improve the quality of the data in order to reduce the impact of the cooling issue.

- GOES-17, in the GOES-West position, is helping forecasters track weather from torrential rain events to wildfires and other environmental hazards throughout the U.S. western region, including California, Alaska and Hawaii. Also, GOES-17 is monitoring typhoons in the eastern Pacific Ocean, including Hawaii.

- The Mishap Investigation Board Summary Report is available online at:

- GOES-17 is one in a series of NOAA’s next generation geostationary weather satellites which include GOES-16, 18 and 19. The advanced instrument technology used on these satellites will result in more timely and accurate forecasts and warnings. It will improve support for the detection and observations of meteorological phenomena. The GOES-R Series program is a collaborative development and acquisition effort between NOAA and NASA to develop, launch and operate the geostationary weather satellites.

• February 12, 2019: GOES-17 is now operational as NOAA’s GOES West satellite. In its new role, GOES-17 will serve as NOAA’s primary geostationary satellite for detecting and monitoring Pacific storm systems, fog, wildfires, and other weather phenomena that affect the western United States, Alaska, and Hawaii. 60)


Figure 17: GOES-17 GeoColor view of the Northern Hemisphere, Feb. 9, 2019 (image credit: NOAA/NESDIS)

- The latest milestone for GOES-17 comes exactly eleven months after the satellite first reached its geostationary orbit at 35,780 km above Earth. Launched March 1, 2018, GOES-17 is NOAA’s second advanced geostationary weather satellite and the sister satellite to GOES-16 (also known as GOES East). Together the two satellites provide high-resolution visible and infrared imagery as well as lightning observations of more than half the globe – from the west coast of Africa to New Zealand, and from near the Arctic Circle to the Antarctic Circle.

- Better weather forecasts for the Western U.S.: GOES-17 has already been helping forecasters track the weather and other environmental hazards in places like California, Alaska and Hawaii. The satellite began transmitting its first images from its new orbital position in November 2018. Since then, forecasters have been using GOES-17 data to see weather forming over the northeastern Pacific Ocean, where many weather systems that affect the continental U.S. first form.

- Until recently, high-quality data coverage of the Pacific Ocean was sparse. Now that GOES-17 data is available, however, forecasters have access to more detailed views of high-impact weather systems and other environmental hazards like wildfire smoke and volcanic ash.

Figure 18: GOES-17 watches a storm nearing California on Feb. 2, 2019 (image credit: NOAA, CIRA)

- For example, GOES-17 helps forecasters predict the intensity and impact of Pacific storms that hit the West Coast. These include atmospheric river events that bring heavy rain and high-elevation snow to California and the Pacific Northwest, especially during the winter months.

- In Hawaii and the central Pacific Ocean, GOES-17’s high-resolution visible and infrared imagery will improve hurricane forecasts and allow meteorologists to better predict areas of intense rainfall. In 2018, Hawaii set a new national rainfall record when 49.69 inches of rain fell in 24 hours. The state also faced several tropical weather threats in what became an active hurricane season in the Central and Eastern Pacific.

Figure 19: GOES-17 watches clouds form around Hawaii's Big Island on Jan. 15, 2019 (image credit: NOAA)

- Forecasters in Hawaii and other remote territories like the Marshall Islands and American Samoa are also now able to track thunderstorms in real-time. The Geostationary Lightning Mapper (GLM) on-board GOES-17 helps forecasters determine when thunderstorms and convective weather events are intensifying or becoming more dangerous. In 2018, the National Weather Service began using GLM data to issue severe thunderstorm warnings and keep the public out of harm’s way.

Figure 20: GOES-17 sees a thick plume of brown smoke from the Woolsey Fire in southern California on Nov. 13, 2018 (image credit: NOAA)

- Tracking wildfires. Among the benefits of GOES-17’s high-resolution and rapid-scan capability is its ability to detect wildfires and monitor smoke coverage in near real-time. The dry climate of the western U.S. makes the region especially vulnerable to wildfires. In 2018, for example, California faced one of its deadliest and most destructive wildfire seasons on record.

- Providing high-definition images as often as every minute, GOES-17 helps forecasters distribute critical information to firefighters and emergency managers that saves lives. Real-time imagery of smoke plumes from fires also improves air quality forecasts.

Figure 21: Denali, the highest peak in North America, casts a shadow over interior Alaska in this GOES-17 imagery from Nov. 16, 2018 (image credit: NOAA)

- GOES-17 has been especially valuable to Alaska, where NOAA’s older geostationary satellites provided far less coverage. The state’s vast territory and sparse population mean that Earth-based observations from radar, aircraft and buoys, are limited.

- The satellite’s combinable image channels (known as “multispectral imagery”) help forecasters distinguish between clouds, snow-covered ground and sea ice around Alaska’s coasts. These advanced imaging capabilities mean safer, more accurate aviation and shipping forecasts, especially during Alaska’s long, dark winter months, when visible satellite imagery is less useful.

- “In my nearly six years forecasting here, I have never seen a product revolutionize our ability to forecast the way GOES-17 has,” said Michael Ottenweller, a National Weather Service forecaster at the Anchorage, Alaska field office. “The advent of GOES over our domain makes forecasting tangibly easier and better.”

- Ottenweller described a recent experience forecasting fog over southwestern Alaska. Before GOES-17 data was available, forecasters would have to wait for data from polar-orbiting satellites passing over Alaska. “Now, not only do I have reliable data, but I can loop that data. This changes everything,” said Ottenweller. “We are excited to see what [GOES-17] brings for the convective and fire weather season.”

- Fog and icy conditions often cause flight delays and impact airport operations. At Ted Stevens International Airport in Anchorage, fog occurs almost daily during winter. The airport is the second-busiest cargo airport in the U.S. and fourth-busiest in the world, which makes understanding the timing of fog and low clouds especially important. Just as GOES-16 data helped airlines mitigate flight delays at San Francisco International Airport in early 2017, GOES-17 data will help forecasters to predict when fog will form and clear with much greater accuracy.

Figure 22: This GOES-17 loop of sulfur dioxide concentrations allowed forecasters to track volcanic ash from the eruption of Alaska’s Veniaminof Volcano. The ash clearly stands out even when other clouds are nearby (Imagery from Nov. 21, 2018), image credit: NOAA

- Among GOES-17’s many benefits to Alaska is the satellite’s ability to track volcanic ash clouds. Data from GOES-17 makes it easier to determine the site of an eruption, as well as the height and direction in which an ash cloud is moving. Forecasters share this information with other agencies, such as the Alaska Aviation Weather Unit and the U.S. Geological Survey’s Alaska Volcano Observatory to issue volcanic ash advisories and other warnings to keep air travel safe.

- GOES-15 and GOES-17 working in unison. Now that it is operational, GOES-17 replaces GOES-15 as NOAA’s GOES West satellite. The latter entered service in December 2011. However, due to technical issues with GOES-17’s Advanced Baseline Imager – or ABI, the satellite’s main instrument – GOES-15 and GOES-17 will operate in unison until early July 2019. The overlap will allow scientists and engineers to make sure that GOES-17 is performing adequately before the older GOES-15 satellite gets placed in storage as a backup.

- “The GOES-17 ABI is now projected to deliver more than 97 percent of the data it was designed to provide, a testament to the skill and dedication of the engineers and all the GOES project team members,” said Stephen Volz, Ph.D., director, NOAA’s Satellite and Information Service. “We are confident the GOES constellation will continue to meet the needs of forecasters across the country.”

• October 22, 2018: NOAA’s GOES-17 satellite (former GOES-7) is getting ready to move to its new vantage point at 137.2º west longitude, allowing us to see the weather at high resolution in the western U.S., Alaska and Hawaii, and much of the Pacific Ocean. 61)

- For the past seven months, the satellite has been in a temporary position – at 89.5º west longitude – known as its on-orbit checkout location. Since then, scientists have been testing and calibrating GOES-17’s instruments so it is ready for “prime time” when the satellite becomes operational.

- But before that happens, GOES-17 first has to move to its new orbital position over Earth’s equator at 137.2 degrees west longitude. This relocation process, known as “drift,” will take about three weeks to complete.

- On October 24, at 1:40 p.m. EDT, GOES-17 will begin moving westward – at a rate of 2.5º longitude per day – until it reaches its new position on November 13.

- During the drift period, five of GOES-17's instruments (ABI, GLM, SUVI, SEISS and EXIS) will not be collecting or sending us any data. These are the high-tech sensors we use to see clouds at high resolution, map lightning flashes, or monitor solar flares from space. Other features, including the Search and Rescue Satellite-Aided Tracking (SARSAT) system will also be disabled.

- How exactly do these satellites physically get moved from point A to point B thousands of miles above Earth? -NOAA's Office of Satellite Product and Operations team can plan all of these maneuvers using navigation software. For a satellite to change its orbital position, it follows a series of commands uploaded by the operations team to the spacecraft's memory. The mission operations center validates and rehearses these maneuver sequences on the ground using a satellite simulator.

- Normally, satellites maintain the same distance from Earth while operational and transmitting data. During drift, however, GOES-17's altitude will actually be raised slightly (by about 125 miles). This maneuver helps nudge the satellite to begin moving into its new orbital position. After GOES-17 finishes drifting, NOAA's mission operations team will lower the satellite back to its normal operating altitude. This raising and lowering process is used any time a geosynchronous satellite needs to change orbital positions.

- When GOES-17 reaches 137.2º west on November 13, the satellite’s instruments won’t be turned on right away. First, a team of scientists will have to calibrate the instruments to ensure everything is working properly. If everything checks out, the transmitters on-board the spacecraft will be turned back on.

- The next big milestone comes November 15, 2018. That’s when GOES-17 will start sending imagery and data via the GOES Rebroadcast System, and we’ll start seeing the first views of Alaska, Hawaii and the Pacific Ocean from GOES-17’s new orbital position. It will be an exciting day for all of us satellite enthusiasts, but the satellite won’t officially be operational just yet. First, GOES-17 will undergo three more weeks of testing to make sure it’s ready for “prime time.” If everything is working properly, GOES-17 will go into operations as NOAA’s GOES West satellite on December 10, 2018.

- GOES-17 will considerably improve weather forecasting capabilities across the western United States, particularly in Alaska. “With GOES-17, we will have unprecedented coverage of Alaska from geostationary orbit. The GOES-17 imager has four times the resolution of the previous GOES imager, which will make a substantial difference in northern latitudes,” said Dan Lindsey, senior scientific advisor to the GOES-R Series Program. “GOES-17 is going to provide significant benefit for monitoring hazards often experienced in Alaska such as wildfires, volcanic ash, snow and sea ice.”


Figure 23: This maps shows the geographical coverage area of the GOES East and West satellites (image credit: NOAA)

- As the sister satellite to GOES-16, located in the GOES East position, GOES-17 will extend high-resolution satellite coverage from the west coast of Africa across much of the Pacific Ocean.

The GOES-15 drift

- Around the same time that GOES-17 starts to drift, NOAA’s current GOES West satellite, GOES-15, will also move to a new orbital home in order to “make room” for the newcomer. Currently, GOES-15 is keeping watch over the Western U.S. and the Pacific Ocean from 135º west longitude. On October 23, one day before the GOES-17 drift begins, GOES-15 will start its own orbital relocation. While GOES-17 will move west, GOES-15 will be moving east at a rate of 0.88º longitude per day until it reaches its new orbital position at 128º west.

- Because it won’t need to move as far as GOES-17, the GOES-15 drift will only take nine days to complete. The latter satellite will reach its new orbital position on November 1. Unlike GOES-17, all of GOES-15’s instruments will remain on during the drift, and the satellite will continue to capture and send data back to Earth.

Tandem operations

- Although GOES-15 will hand its “GOES West” title to GOES-17 in mid-December 2018, the former satellite won’t fade into sunset right away. Due to the technical issues with GOES-17’s Advanced Baseline Imager (or ABI, the satellite’s primary instrument), NOAA plans to operate GOES-15 and GOES-17 in tandem for at least six months. This will allow scientists to see how well GOES-17 is working as the new GOES West operational satellite.

- While GOES-17 will experience data outages from some of its infrared channels overnight during the warmest parts of the year (before and after the vernal and autumnal equinox, when the instrument absorbs the highest amount of solar radiation), a team of experts has made excellent progress optimizing the performance of the instrument through operational changes.

- “The GOES-17 ABI is now projected to deliver more than 97 percent of the data it was designed to provide, a remarkable recovery,” said Pam Sullivan, System Program Director for the GOES-R Series Program. “We are confident the GOES constellation will continue to meet the needs of forecasters across the country.”

- Looking ahead, NOAA is also implementing changes to the ABI on its future geostationary satellites, GOES-T and GOES-U, to reduce the risk of cooling system anomalies that were seen in GOES-17. The instrument radiator is being redesigned to improve its reliability. Due to this redesign, the planned launch of GOES-T in mid-2020 will be delayed. Once the new ABI radiator design is approved, NOAA will determine a new launch readiness date.

- But before then, atmospheric scientists and weather enthusiasts can look forward to GOES-17’s next-generation imagery of developing storms, wildfires, and other environmental phenomena in Alaska, Hawaii, and much of the Pacific Ocean extending all the way to New Zealand. We’ll start seeing these views shortly after GOES-17 completes the journey to its new orbital position at 137.2º west – the future home of NOAA’s new GOES West satellite.

• October 2, 2018: NASA and NOAA have appointed a board to investigate an instrument anomaly aboard the Geostationary Operational Environmental Satellite (GOES-17, former GOES-S) weather satellite currently in orbit. 62)

- During postlaunch testing of the satellite’s Advanced Baseline Imager (ABI) instrument, it was discovered that the instrument’s infrared detectors cannot be maintained at their required operating temperatures under certain seasonal and orbital conditions, resulting in a loss of approximately three percent of the instrument’s availability over the course of a year. This loss exceeds a key design requirement.

- NASA and NOAA senior leadership have determined the need to convene the mishap investigation board, which will work to determine the root or proximate cause of the anomaly and identify actions to prevent occurrences on future satellites. The board will begin its work as soon as possible.

- GOES-17 is one of several next-generation weather satellites in the GOES-R series, including GOES-16, which currently serves as the operational geostationary weather satellite over the U.S. East coast. Later this year, GOES-17 will become operational as the GOES West satellite. Two additional satellites, GOES-T and GOES-U, are currently in development. The advanced instrument technology used on these satellites is contributing to more timely and accurate weather forecasts and warnings.

- The GOES-R Series program is a collaborative effort between NOAA, NASA and industry partners. NOAA manages the GOES-R Series program through an integrated NOAA/NASA office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA also oversees the acquisition of the spacecraft, instruments and launch vehicles. Mission operations are performed by NOAA at the NOAA Satellite Operations Facility in Suitland, Maryland.

• August 8, 2018: While experts continue addressing an issue with the cooling system of GOES-17’s Advanced Baseline Imager (ABI), they have made progress in increasing the available observing time of the affected infrared channels. Due to adjustments in operating procedures, the ABI is demonstrating improved performance from initial observations. 63)

- This new imagery shows data are currently available from all 16 ABI channels. Channel availability will fluctuate seasonally depending on the amount of solar radiation absorbed by the instrument. During the instrument’s “cool” seasons (near the summer and winter solstice), all channels are expected to be available 24 hours per day. During the instrument’s “warm” seasons (before and after the vernal and autumnal equinox), experts estimate 7 channels (bands 1-7) will be available 24 hours per day and the other 9 channels (bands 8-16) will have outages of 2-6 hours per night. These estimates are preliminary and are still being refined. The warmest part of the season is coming up in early September and performance estimates will need to be confirmed through observation during that time.

- Infrared imagery is used to monitor aerosols, clouds, thunderstorms, hurricanes, rainfall, moisture, atmospheric motion, and volcanic ash. Among the channels that are expected to be fully available is the band that is used for fog/cloud identification at night and for fire/hot spot detection, which will be critical for forecasters in the western U.S.

- NOAA plans to move GOES-17 into operational service in late 2018. The operational configuration will be determined in consultation with the NOAA Office of Satellite and Product Operations, the National Weather Service, and other stakeholders. GOES-17 is currently observing with more channels, at a higher resolution, and with more rapid refresh than what is available from the current GOES West satellite. While the GOES-17 imager will not produce the full set of planned data, it will provide more and better data than currently available. Experts are confident the GOES constellation will continue to meet the operational needs of the National Weather Service and forecasters across the nation.

- While experts continue addressing an issue with the cooling system of GOES-17’s Advanced Baseline Imager (ABI), they have made progress in increasing the available observing time of the affected infrared channels. Due to adjustments in operating procedures, the ABI is demonstrating improved performance from initial observations.


Figure 24: This 16-panel image shows a snapshot of the continental U.S. and surrounding oceans from each of the Advanced Baseline Imager channels at 2:02 p.m. EDT on July 29, 2018. This includes, from top left to bottom right, two visible channels, four near-infrared channels, and ten infrared channels. Each channel has a specific purpose in discerning meteorological and environmental features. A number of features can be seen in this image, including clouds over the mid-Mississippi region and off both coasts, the warm land temperatures over the Western U.S., and atmospheric moisture. This imagery was captured between the instrument’s “cool” and “warm” season, when all 16 channels are available 24 hours per day. During the instrument’s “warm” seasons, varied data outages are expected for 9 of the channels during nighttime hours. The ABI’s increased channels provide three times more spectral information than the previous GOES imager (image credit: NOAA/NASA)

- This new imagery shows data are currently available from all 16 ABI channels. Channel availability will fluctuate seasonally depending on the amount of solar radiation absorbed by the instrument. During the instrument’s “cool” seasons (near the summer and winter solstice), all channels are expected to be available 24 hours per day. During the instrument’s “warm” seasons (before and after the vernal and autumnal equinox), experts estimate 7 channels (bands 1-7) will be available 24 hours per day and the other 9 channels (bands 8-16) will have outages of 2-6 hours per night. These estimates are preliminary and are still being refined. The warmest part of the season is coming up in early September and performance estimates will need to be confirmed through observation during that time.

- Infrared imagery is used to monitor aerosols, clouds, thunderstorms, hurricanes, rainfall, moisture, atmospheric motion, and volcanic ash. Among the channels that are expected to be fully available is the band that is used for fog/cloud identification at night and for fire/hot spot detection, which will be critical for forecasters in the western U.S.

- NOAA plans to move GOES-17 into operational service in late 2018. The operational configuration will be determined in consultation with the NOAA Office of Satellite and Product Operations, the National Weather Service, and other stakeholders. GOES-17 is currently observing with more channels, at a higher resolution, and with more rapid refresh than what is available from the current GOES West satellite. While the GOES-17 imager will not produce the full set of planned data, it will provide more and better data than currently available. Experts are confident the GOES constellation will continue to meet the operational needs of the National Weather Service and forecasters across the nation.

• On March 12, 2018, GOES-S executed its final liquid apogee engine burn, placing the satellite in geostationary orbit at an altitude of 35,786 km. GOES-S is now GOES-17! The satellite will be called GOES-17 for the remainder of its lifespan. GOES satellites are designated a letter prior to launch and renamed with a number once they achieve geostationary orbit. 64)

- On March 13, GOES-17 will perform its second stage solar array deployment, releasing the solar array yoke and solar pointing platform. In the days that follow, several maneuvers will be conducted to put GOES-17 in its 89.5º west longitude checkout position. Finally, the magnetometer boom will be deployed. Post-launch testing and calibration is scheduled to begin on March 26. The first imagery from the satellite is expected in mid-May.


Figure 25: GOES-S view of Earth from its checkout location (image credit: NOAA, NASA)

- GOES-17 will undergo a six-month on-orbit checkout of its instruments and systems, followed by operational handover procedures. The satellite move to its operational location at 137º west longitude is planned for late 2018 to become NOAA’s GOES West.

- GOES-17 will provide faster, more accurate, and more detailed data in near realtime to track storm systems, lightning, wildfires, coastal fog, and other hazards that affect the western U.S., Hawaii and Alaska. An operational GOES-17 will give the Western Hemisphere two next-generation geostationary satellites. Together, GOES-16 and GOES-17 will keep an eye on weather and environmental hazards from the west coast of Africa all the way to New Zealand.

• March 1, 2018: NOAA offers a GOES-East full disk view in Geocolor. 65)

Figure 26: Geocolor image of GOES-East — true color daytime, multispectral IR at night (image credit: NOAA)

Legend to Figure 26: Geocolor is a multispectral product composed of True Color (using a simulated green component) during the daytime, and an Infrared product that uses bands 7 and 13 at night. During the day, the imagery looks approximately as it would appear when viewed with human eyes from space. At night, the blue colors represent liquid water clouds such as fog and stratus, while gray to white indicate higher ice clouds, and the city lights come from a static database that was derived from the VIIRS Day Night Band.

Geocolor was developed at the Cooperative Institute for Research in the Atmosphere (CIRA) and STAR's Regional and Mesoscale Meteorology Branch (RAMMB).

• December, 2017: GOES-East Image Viewer. Now in its new GOES-East position, the advanced GOES-16 satellite has officially joined NOAA’s operational observation network, providing forecasters with sharper, more defined images of severe storms, hurricanes, wildfires and other weather hazards in near real-time 24/7. 66)

- You can view the latest, stunning imagery from GOES-East via NOAA's new GOES-East Image Viewer. The Viewer provides "full disk" views of Earth (covering the Western Hemisphere) as well as views of the continental US and adjacent waters (CONUS). Finally, the viewer also provides "mesoscale" imagery — views of small regional or areas that can help reveal significant environmental features.


Figure 27: Full disk view as seen in GeoColor : 3 Jan. 2018 - 11:45 GMT or 07:45 EST (image credit: NOAA/NESDIS)

Legend to Figure 27: While derived from operational satellites, the data, products, and imagery available on this website are intended for informational purposes only. This website is supported on a Monday-Friday basis, so outages may occur without notice and may not be immediately resolved. Neither the website nor the data displayed herein are considered operational, and should not be used to support operational observation, forecasting, emergency, or other disaster mitigation or response operations, either public or private.

• December 18, 2017: NOAA's GOES-16 weather satellite declared operational. Now in its new GOES-East position at 75.2º W, the advanced GOES-16 satellite has officially joined NOAA’s operational observation network, providing forecasters with sharper, more defined images of severe storms, hurricanes, wildfires and other weather hazards in near realtime 24/7. 67)

- “The GOES-16 satellite provided invaluable data on deadly hurricanes long before they touched the shore this season,” said Secretary of Commerce Wilbur Ross. “As it becomes fully operational, GOES-16 will continue to monitor extreme weather events, safeguarding American lives and property from its perch thousands of miles above the Earth.”

- Since its launch in November 2016, NOAA’s GOES-16, even in its testing stage, showed its potential to improve weather forecasts and brought new levels of situational awareness to forecasters, emergency managers, and the public. The satellite covers most of North America – all of the continental U.S., Mexico and most of Canada, from 35,786 km above the Earth.

- “GOES-16 has proven to be one of the most important tools we’ve ever developed for our weather and hazard forecasts,” said retired Navy Rear Adm. Timothy Gallaudet, Ph.D., acting NOAA administrator. “From its impressive first image of Earth last January to monitoring tropical storms and wildfires, GOES-16 has and will continue to greatly improve our ability to visualize potential threats, and enhance forecasts and warnings to save lives and protect property.”

- GOES-16 provided critical data which enabled emergency preparations and response during this year’s extremely active hurricane season. The new satellite delivered experimental imagery with detail and clarity never achieved before. Its high resolution – four times higher than previous NOAA satellites – and views of Earth taken every 30 seconds allowed forecasters to monitor how and when storms developed. Data from GOES-16 allowed forecasters to better assess and predict how much rain Hurricane Harvey would produce over Texas and see its rapid intensification, along with hurricanes Irma, Jose, and Maria.

- GOES-16 data helped monitor and detect wildfires, and gave forecasters detailed images of wildfire smoke, enhancing their air quality forecasts. Imagery from GOES-16 helped forecasters spot new wildfires in California, Kansas, Oklahoma, and Texas, and determine which fires were hottest and where the fires were spreading. This critical information was shared with and used by firefighters and emergency managers.

- GOES-16 testing showed potential improvements for aviation weather forecasting and airport operations. Forecasters are now able to predict with greater accuracy than before when fog and clouds will form and clear. The new satellite can also detect turbulence, enabling forecasters to issue timely advisories, aiding in aircraft and passenger safety.

- “We are using the GOES-16 data in ways we planned and in ways we didn’t even imagine,” said National Weather Service director Louis Uccellini. “GOES-16 has been a game changer for monitoring hurricanes, wildfires, severe storms, and lightning. Now that it is operational and the data is incorporated into the forecast process, we will be able to use it across all our service areas, starting with winter storms.”

- Data from GOES-16 has been available to NOAA forecasters and the national and international weather modeling and forecasting community during the satellite’s testing phase and will continue to do so.

- GOES-16 is the first in the series of next-generation geostationary satellites, that provides valuable data in support of NOAA’s Weather-Ready Nation initiative. The next new NOAA satellite, GOES-S is scheduled to launch March 1, 2018 followed by GOES-T in 2020 and GOES-U in 2024. These satellites will enable NOAA to more closely monitor weather systems over North America, South America, and the Atlantic and Pacific Oceans, to help protect lives and property.


Figure 28: Image of Hurricane Harvey captured by GOES-East (GOES-16) on August 15, 2017 (image credit: NOAA)

• October 23, 2017: NOAA is planning to move GOES-16 into its operational orbit at 75.2º west longitude (the GOES East position) starting on November 30, 2017. GOES-16 will officially become GOES-East when all instruments resume regular operations on December 20, 2017. Note: Currently, GOES-16 resides in a central checkout orbit of 89.5º west longitude, where it is in its extended validation phase. 68)

- During the drift period, five instruments (ABI, GLM, SUVI, SEISS, and EXIS) will be placed in safe or diagnostic modes and will not be capturing or distributing data. The magnetometers will be the only instruments that will continue to operate throughout the drift period.

- NOAA’s GOES-13, currently serving as GOES-East, will continue to provide instrument data (allowing a period of overlap) until January 2, 2018, at which time instruments will be turned off and it will moved to its storage location at 60º west.

• September 2017: Highlights from GOES-16’s First Year in Orbit: Even during the current extended test and check-out period, there are already a number of exciting examples of how GOES-16 data were recently used during recent disastrous weather phenomena to track and observe hurricanes and their aftermath during the 2017 Atlantic Basin hurricane season (Ref. 83).

- A full visualization showing satellite data of Hurricane Irma from GOES-13 and GOES-16—a representative frame of which is shown in the screen grab in Figure 29—clearly demonstrates the improved spatial (approximately 0.5 km vs. 1.0 km) and temporal (1 min vs. 15 min) resolutions that arise from GOES-16’s improvements.


Figure 29: This figure demonstrates the increased spatial resolution of satellite data for Hurricane Irma from GOES-13 [left] and GOES-16 [right]. On previous GOES missions these high-resolution images were not routine, but with GOES-16’s advanced capabilities, these images are now operational (image credit: Colorado Institute for Research in the Atmosphere, Colorado State University)

• June 14, 2017: In western Washington State, fog forms frequently in the summer and fall. Skies are often clearer than in other seasons, allowing surface heat to escape and air to cool, which leads to fog. But fog can happen any time of year if conditions are right. 69)

- Conditions were right on May 20, 2017, when winds pushed coastal fog eastward from the Pacific Ocean into the Strait of Juan de Fuca, the channel between Washington state and Vancouver Island. The images above were acquired by the ABI (Advanced Baseline Imager) on GOES-16. The satellite is operated by NOAA (National Oceanic and Atmospheric Administration), which includes the National Weather Service. NASA helps develop and launch the GOES series of satellites.

- The GOES satellites are particularly well suited to capture the movement of clouds and weather systems because these satellites follow Earth’s orbit and maintain a fixed position over a region. For phenomena that evolve quickly—like storms, or in this case, fog—this so-called geostationary orbit gives a timely view.

- GOES captured this series of images on May 20 as fog rolled into the strait. At 3:02 p.m. local time (22:02 Universal Time), stratus clouds hung low off the coasts of Washington and British Columbia. Within two hours, the fog was about halfway into the strait; two hours later, the fog encountered the sharp landmass of Whidbey Island, which imparted a wave structure to the clouds.

- According to Scott Bachmeier, a research meteorologist at the University of Wisconsin-Madison, winds that afternoon were about 28 km/ hour, with gusts that evening up to 50 km/ hour. It’s not uncommon for fog to fill the strait; lower-resolution GOES and the Suomi NPP satellite imagers captured similar views in August 2016 and April 2013.

- “This fog feature and its motion were more accurately depicted by the improved spatial and temporal resolution of GOES-16 imagery,” Bachmeier said. “The small-scale “bow shock waves” would probably not have been seen with lower-resolution GOES visible imagery.”


Figure 30: The images are based on preliminary, non-operational data from GOES-16. NOAA recently announced that GOES-16 will be moved to replace the GOES-East satellite by the end of 2017. In addition to observing weather on Earth, GOES-16 carries instruments for monitoring solar activity and space weather (image credit: NASA Earth Observatory images by Jesse Allen, using GOES 16 imagery provided courtesy of the CIMSS (Cooperative Institute for Meteorological Satellite Studies) at the University of Wisconsin. Story by Kathryn Hansen)

• May 25, 2017: GOES-16, the most advanced weather satellite NOAA has ever developed, will be moved to the GOES-East position at 75º west longitude, once it is declared operational in November. Top officials from NOAA announced the long-awaited decision at today’s 2017 Atlantic Hurricane Season Outlook news conference in College Park, Maryland. 70)

- “As a Florida resident, I am particularly proud of the important work NOAA does in weather forecasting and hurricane prediction,” said U.S. Secretary of Commerce Wilbur Ross. “GOES-16’s unmatched detail in observations and other data will improve forecasts, provide considerable benefits to the economy, and help improve public safety. It will improve forecasters’ situational awareness and lead to more accurate, timely, and reliable watches and warnings.”

- After GOES-16 was launched on November 19, the satellite’s instruments and the data they produce have undergone an extensive engineering checkout and instrument validation period. Once GOES-16 reaches its East location, the current GOES-East satellite (GOES-13) will be placed into orbital storage along with GOES-14 and remain available if needed. From its perch 35,786 km over the Equator, GOES-16 will be able to see the entire United States.

- GOES-16 scans the Earth and skies five times faster than NOAA’s current geostationary weather satellites, sending back sharper, more defined images at four times greater resolution as often as every 30 seconds, using three times the spectral channels as the previous model. The higher resolution will allow forecasters to see more details in storm systems, especially during periods of rapid strengthening or weakening. Also, GOES-16 carries the first lightning detector flown in geostationary orbit. Total lightning data (in-cloud and cloud-to-ground) from the lightning mapper will provide critical information to forecasters, allowing them to focus on developing severe storms much earlier.

- Meanwhile, GOES-15 will continue as the GOES-West satellite. Positioning satellites in the East and West locations, along with an on-orbit spare, ensures that forecasters get a thorough look at developing weather systems that affect the U.S., from the western Pacific to the coast of Africa.

- GOES-16 is the first in a series of four next-generation geostationary satellites. The next, GOES-S, is scheduled to launch by spring 2018 and will be expected to move to the GOES-West location once it is commissioned. GOES-S will be followed by the launches of GOES-T and GOES-U, in 2020 and 2024, respectively.


Figure 31: This graphic shows the GOES-East orbital position, GOES-16 will be placed in November, along with its coverage reach, compared with GOES-West. (image credit: NOAA)

• March 22, 2017: GOES-16 is ready to embark on another major milestone— The GOES-16 Field Campaign! During this three-month event, an assemblage of high-altitude planes, ground-based sensors, drones, and satellites will be used to fine-tune GOES-16’s suite of brand new instruments. 71) 72)

- Since NOAA’s GOES-16 satellite lifted off on November 19, 2016, a team of scientists and engineers from both NOAA and NASA, has been working around the clock to power on the satellite’s advanced instruments and to get their data back to Earth.

- During this three-month campaign, a team of instrument scientists, meteorologists, GOES-16 engineers, and specialized pilots will use a variety of high-altitude planes, ground-based sensors, unmanned aircraft systems (or drones), the ISS (International Space Station), and the NOAA/NASA Suomi NPP polar-orbiting satellite to collect measurements across the United States. From arid desserts and areas of dense vegetation, to open oceans and storms exhibiting lightning activity, these measurements will cover nearly everything NOAA’s GOES satellites see from their orbit 35,786 km above the Earth.

- Although these data are collected on Earth, GOES-16’s operators will obtain similar measurements of the same locations using two of the satellite’s most revolutionary instruments—ABI (Advanced Baseline Imager) and the GLM (Geostationary Lightning Mapper). The data sets will be analyzed and compared to the data collected by the planes, drones, and sensors to validate and calibrate the instruments on the satellite.

- NOAA’s mission is to ensure that data from its satellites are precise, accurate, and widely available, so before GOES-16 becomes operational, it must go through an exhaustive testing phase, wherein its instruments are checked and re-checked using measurements from a vast range of verified sources. — When the testing is complete, all of the GOES-16 Field Campaign information will be permanently stored as reference data at NOAA’s National Centers for Environmental Information.


Figure 32: NASA’s ER-2 aircraft takes off from its base of operations at NASA’s Armstrong Flight Research Center in Palmdale, California to test instruments that will support upcoming science flights for GOES-16 (image credit: NASA)


Figure 33: The Fly’s Eye Geostationary Lightning Mapper Simulator, mounted on NASA’s ER-2 plane, will map lightning strikes using 30 photometers, instruments that measure the intensity of light. These measurements will help calibrate GOES-16’s GLM (image credit: NASA)

• March 6, 2017: The first images of the GLM ( Geostationary Lightning Mapper) on GOES-16 were obtained on Feb. 14 — giving NOAA National Weather Service forecasters richer information about lightning that will help them alert the public to dangerous weather. 73) 74)

- The first lightning detector in a geostationary orbit,GLM , is transmitting data never before available to forecasters. The mapper continually looks for lightning flashes in the Western Hemisphere, so forecasters know when a storm is forming, intensifying and becoming more dangerous. Rapid increases of lightning are a signal that a storm is strengthening quickly and could produce severe weather.

- During heavy rain, GLM data will show when thunderstorms are stalled or if they are gathering strength. When combined with radar and other satellite data, GLM data may help forecasters anticipate severe weather and issue flood and flash flood warnings sooner. In dry areas, especially in the western United States, information from the instrument will help forecasters, and ultimately firefighters, identify areas prone to wildfires sparked by lightning.

- Accurate tracking of lightning and thunderstorms over the oceans, too distant for land-based radar and sometimes difficult to see with satellites, will support safe navigation for aviators and mariners.

- The new mapper also detects in-cloud lightning, which often occurs five to 10 minutes or more before potentially deadly cloud-to-ground strikes. This means more precious time for forecasters to alert those involved in outdoor activities of the developing threat.

- NOAA’s satellites are the backbone of its life-saving weather forecasts. GOES-16 will build upon and extend the more than 40-year legacy of satellite observations from NOAA that the American public has come to rely upon.


Figure 34: This is one hour of GOES-16's GLM (Geostationary Lightning Mapper) lightning data from Feb. 14, when GLM acquired 1.8 million images of the Earth. It is displayed over GOES-16 ABI full disk Band 2 imagery. Brighter colors indicate more lightning energy was recorded; the color bar units are the calculated kW-hours of total optical emissions from lightning. The brightest storm system is located over the Gulf Coast of Texas (image credit: NOAA, NASA)

• February 27, 2017: The first test images from the SUVI (Solar Ultraviolet Imager) instrument aboard NOAA’s GOES-16 satellite have been successful, capturing a large coronal hole on Jan. 29, 2017. The sun’s 11-year activity cycle is currently approaching solar minimum and during this time powerful solar flares become scarce and coronal holes become the primary space weather threat. Once operational, SUVI will capture full-disk solar images around-the-clock and will be able to see more of the environment around the sun than earlier NOAA geostationary satellites. 75)

- The sun’s upper atmosphere, or solar corona, consists of extremely hot plasma, an ionized gas. This plasma interacts with the sun’s powerful magnetic field, generating bright loops of material that can be heated to millions of degrees. Outside hot coronal loops, there are cool, dark regions called filaments which can erupt and become a key source of space weather when the sun is active. Other dark regions are called coronal holes, which occur where the sun’s magnetic field allows plasma to stream away from the sun at high speed, resulting in cooler areas. The effects linked to coronal holes are generally milder than those of coronal mass ejections, but when the outflow of solar particles in intense, they can still pose risks to Earth.

- The solar corona is so hot that it is best observed with X-ray and EUV (Extreme-Ultraviolet) cameras. Various elements emit light at specific EUV and X-ray wavelengths depending on their temperature, so by observing in several different wavelengths, a picture of the complete temperature structure of the corona can be made. The GOES-16 SUVI observes the sun in six EUV channels.

- Data from SUVI will provide an estimation of coronal plasma temperatures and emission measurements which are important to space weather forecasting. SUVI is essential to understanding active areas on the sun, solar flares and eruptions that may lead to coronal mass ejections which may impact Earth. Depending on the magnitude of a particular eruption, a geomagnetic storm can result that is powerful enough to disturb Earth’s magnetic field. Such an event may impact power grids by tripping circuit breakers, disrupt communication and satellite data collection by causing short-wave radio interference and damage orbiting satellites and their electronics. SUVI will allow the NOAA Space Weather Prediction Center to provide early space weather warnings to electric power companies, telecommunication providers and satellite operators.


Figure 35: These six images show the sun in each of SUVI's six wavelength, each of which is used to see a different aspect of solar phenomena, such as coronal holes, flares, coronal mass ejections, and so on (image credit: NOAA)

• February 10, 2017: The SEISS (Space Environment Inā€Situ Suite) instrument onboard NOAA’s GOES-16 is working and successfully sending data back to Earth. A plot from SEISS data showed how fluxes of charged particles increased over a few minutes around the satellite on January 19, 2017. These particles are often associated with brilliant displays of aurora borealis at northern latitudes and borealis australis at southern latitudes; however, they can pose a radiation hazard to astronauts and other satellites, and threaten radio communications. 76)

- Information from SEISS will help NOAA's Space Weather Prediction Center provide early warning of these high flux events, so astronauts, satellite operators and others can take action to protect lives and equipment.

- SEISS is composed of five energetic particle sensor units. The SEISS sensors have been collecting data continuously since January 8, 2017, with an amplitude, energy and time resolution that is greater than earlier generations of NOAA’s geostationary satellites.


Figure 36: This plot of SEISS data shows injections of protons and electrons observed by the MPS-HI (Magnetospheric Particle Sensors-HI) and SGPS (Solar and Galactic Proton Sensor) on January 19, 2017. MPS-HI and SGPS are two of the individual sensor units on SEISS. The fluxes shown are from the MPS-HI telescopes that look radially outward from the Earth, and from the lowest-energy channel observed by the eastward-looking SGPS (image credit: NOAA, NASA)

• February 3, 2017: On January 21, 2017, the GOES-16 EXIS (Extreme Ultraviolet and X-Ray Irradiance Sensors) observed solar flares. Solar flares are huge eruptions of energy on the sun and often produce clouds of plasma traveling more than a million miles an hour. When these clouds reach Earth they can cause radio communications blackouts, disruptions to electric power grids, errors in GPS navigation, and hazards to satellites and astronauts. The EXIS instrument on NOAA’s GOES-16, built by the University of Colorado’s LASP (Laboratory for Atmospheric and Space Physics) in Boulder, Colorado, measures solar flares at several wavelengths and improves upon current capabilities by capturing larger flares, measuring the location of the flares on the sun, and measuring flares in more wavelengths. The GOES-16 EXIS will provide forecasters at the NOAA’s Space Weather Prediction Center with early indications of impending space weather storms so they can issue alerts, watches and warnings. 77)

- Current geostationary satellites measure solar X-ray and extreme ultraviolet fluxes. The higher resolution EXIS instrument will provide new capabilities, including the ability to capture larger solar flares.


Figure 37: An example of EXIS observations at two different wavelengths of a flare that peaked at 11:05 UTC on January 21, 2017 (image credit: NOAA, NASA)

Legend to Figure 37: This was a relatively small flare, yet the brightness of the sun in soft (lower energy) X-rays increased by a factor of 16. EXIS will give NOAA and space weather forecasters the first indication that a flare is occurring on the sun, as well as the strength of the flare, how long it lasts, the location of the flare on the sun, and the potential for impacts here at Earth.

• On January 23, 2017, NOAA released the first images from the GOES-16 (formerly GOES-R) spacecraft. 78) 79) 80)

- The ABI can provide a full disk image of the Earth every 15 minutes, one of the continental U.S. every five minutes, and has the ability to target regional areas where severe weather, hurricanes, wildfires, volcanic eruptions or other high-impact environmental phenomena are occurring as often as every 30 seconds. The ABI covers the Earth five-times faster than the current generation GOES imagers and has four times greater spatial resolution, allowing meteorologists to see smaller features of the Earth’s atmosphere and weather systems.

- “Seeing these first images from GOES-16 is a foundational moment for the team of scientists and engineers who worked to bring the satellite to launch and are now poised to explore new weather forecasting possibilities with this data and imagery,” said Stephen Volz, NOAA’s assistant administrator for Satellite and Information Services, Silver Spring, Maryland. “The incredibly sharp images are everything we hoped for based on our tests before launch. We look forward to exploiting these new images, along with our partners in the meteorology community, to make the most of this fantastic new satellite.”


Figure 38: This composite color full-disk visible image of the Western Hemisphere was captured from NOAA GOES-16 satellite on Jan. 15, 2017 and was created using several of the 16 spectral channels available on the satellite's ABI (Advanced Baseline Imager). The image shows North and South America and the surrounding oceans (image credit: NOAA)


Figure 39: This 16-panel image shows the continental United States in the two visible, four near-infrared and 10 infrared channels on ABI, acquired on Jan. 15, 2017. These channels help forecasters distinguish between differences in the atmosphere like clouds, water vapor, smoke, ice and volcanic ash (image credit: NOAA/NASA)

• January 5, 2017: On December 22, 2016, scientists received preliminary data from the outboard magnetometer (MAG) instrument aboard GOES-16. MAG observations of Earth's geomagnetic field strength are an important part of NOAA’s space weather mission, with the data used in space weather forecasting, model validation, and for developing new space weather models. The GOES-16 MAG samples five times faster than previous GOES magnetometers, which increases the range of space weather phenomena that can be measured. 81)


Figure 40: Outboard MAG uncalibrated data from December 22, 2016 (image credit: NOAA)

• December 12, 2016: Over the last week, GOES-16 has deployed its magnetometer boom; powered on its ABI, GLM, SUVI, and EXIS instruments; and its ground stations are now receiving space weather data from the spacecraft! The satellite's instruments will continue to progress through their planned testing and calibration phases over the next several weeks (Ref. 81).

• On November 29, 2016, NOAA's GOES-R satellite executed its final liquid apogee engine burn without anomaly. This has placed the satellite approximately 35,400 km away with an inclination of 0.0º, meaning it has reached geostationary orbit. GOES-R is now GOES-16! 82)

- On Nov. 30, GOES-16 will perform its second stage solar array deployment, releasing the solar array yoke and solar pointing platform. In the days that follow, the software will be transitioned from the 'orbit raising' mission phase to 'operational,' several maneuvers will be conducted to adjust the satellites precise orbit, and the magnetometer boom will be deployed. Testing and calibration of GOES-16 will then begin.

• November 23, 2016: Since launch on Nov. 19, GOES-R has transitioned to the ‘orbit raising’ phase of the mission and is making its way to geostationary orbit. The spacecraft is currently positioned in a sun-point attitude, which allows its solar array to harness the sun’s power (Ref. 82).

- The GOES-R team has performed the first LAE (Liquid Apogee Engine) burn without anomaly. This engine burn is part of a series of LAEs that will help position GOES-R in geostationary orbit. The next major milestone will be the second stage deployment of GOES-R’s solar array, which is currently scheduled to occur on November 30, 2016.

NASA Partnership

The GOES partnership between NOAA and NASA is but one chapter in a long history of collaboration between the two organizations that goes well beyond the scope of this article.* The initial Basic Agreement between NOAA and NASA to work together on GOES, signed in 1975, established that NOAA would provide requirements and funding for the GOES Program, and that NASA would serve as NOAA’s agent in procuring and overseeing development of the satellites. In 1998 NOAA and NASA updated the Basic Agreement, assigning to NASA’s Goddard Space Flight Center (GSFC) the responsibility for procuring, developing, and testing GOES Program spacecraft and instruments, and with NOAA responsible for satellite operations, science algorithms, and ground processing.

The partners agreed that NOAA would manage the GOES-R Series Program (including GOES-16 and the future satellites) through an integrated NOAA–NASA office, staffed with personnel from both agencies. Using NOAA’s requirements, NASA would then be responsible for acquiring and developing the platforms, including spacecraft and instrument testing, following NASA’s Science Mission Directorate’s rigorous flight program and project management processes. As part of this agreement, GSFC provides spacecraft launch services and then tests the satellite and instruments for the first 6–12 months in orbit before turning the mission over to NOAA/NESDIS (National Environmental Satellite, Data, and Information Service). NASA collaboration roles go further than providing engineering and acquisition services for GOES; the agency also provides scientific support by welcoming NOAA’s scientists to participate in its Earth science research mission teams. The collaborative efforts include algorithm development, pre- and post-launch testing, and designing and implementing the calibration and validation program (usually called “cal/val”), discussed later in this article.

The collaboration is not limited to GOES, but includes NOAA’s polar-orbiting operational satellites, where there is considerable overlap of mission activities. NASA’s role in “Research to Operations,”** an effort that promotes the application of research space products to routine societal benefits, is a key component of the partnership.

International Collaborations

International collaboration is a high priority for NOAA to ensure that investments in satellite observations are interoperable and made available to the public, globally. To meet these goals, NOAA participates in the CEOS (Committee for Earth Observing Satellites), Group on Earth Observations, World Meteorological Organization, and the CGMS (Coordination Group for Meteorological Satellites). The primary objectives of the CGMS include providing a forum for technical exchange on meteorological satellite systems; coordinating missions, including establishing complementary orbits, sensors, data formats, processing algorithms, and cal/val activities; and encouraging mutual backup arrangements.

As an example, JMA ( Japan Meteorological Agency) and NOAA have a mutual backup arrangement. The two agencies’ new-generation satellites carry similar advanced imagers [i.e., the Advanced Baseline Imager (ABI) on the GOES-R series is similar to the JMA’s Advanced Himawari Imager (AHI) on Himawari-8 and -9.*** Along similar lines, AMI (Advanced Meteorological Imager) on the KMA (Korean Meteorological Agency’s) GEO-KOMPSAT-2A satellite is almost identical to ABI, except for a single band.

Another example is the NOAA and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)’s Long-Term Cooperation Agreement, signed in 2013, which builds on a 30-year partnership in geostationary, polar-orbiting, and ocean altimetry satellites that has resulted in cost-saving benefits and increased the robustness of both agencies’ observing systems. Similar agreements are in place with China, Korea, France, Canada, India, Australia, and other European agencies.

*Another chapter of the story of NASA–NOAA collaboration was told in “Nimbus Celebrates 50 Years” article in the March-April 2015 issue of The Earth Observer [Volume 27, Issue 2, pp. 18-31 — ]

** The concept of “Research to Operations” has steadily evolved under the direction of NASA and NOAA, and has been extensively studied by the National Academy of Science. To learn more, visit or

*** Animated images from the JMA’s AHI on Himawari-8, which is positioned over the Western Pacific, are available at

Table 2: The GOES Series: Success Through an Interagency Partnership and International Collaboration 83)