Minimize ExoMars 2022

ExoMars 2022 Mission (formerly ExoMars 2020)

Concept    Launch   Development Status    Payloads    References 

The ExoMars program, consisting of two missions, is the first step of ESA's Aurora Exploration Program and is developed in a broad ESA and Roscosmos cooperation, with a contribution from NASA in the areas of Mars proximity Communications and the scientific payloads. It addresses the scientific question of whether life ever existed on Mars and will demonstrate key technologies for entry, descent, landing, drilling and roving on the Martian surface. 1) 2)

The 2020 mission of the ExoMars program will deliver a European rover and a Russian surface platform to the surface of Mars. A Proton rocket will be used to launch the mission, which will arrive to Mars after a nine-month journey. The ExoMars rover will travel across the Martian surface to search for signs of life. It will collect samples with a drill and analyse them with next-generation instruments. ExoMars will be the first mission to combine the capability to move across the surface and to study Mars at depth. 3)

During launch and cruise phase, a carrier module (provided by ESA) will transport the surface platform and the rover within a single aeroshell. A descent module (provided by Roscosmos with some contributions by ESA) will separate from the carrier shortly before reaching the Martian atmosphere. During the descent phase, a heat shield will protect the payload from the severe heat flux. Parachutes, thrusters, and damping systems will reduce the speed, allowing a controlled landing on the surface of Mars.

The ExoMARS 2020 Program will secure the development and qualification of the following technologies:

• Entry, Descent and Landing (EDL) of a payload on the surface of Mars

• Surface mobility with a Rover

• Access to the sub-surface to acquire and analyze in-situ Mars terrain samples

• Qualification of Russian ground-based means for deep-space communication in cooperation with ESA’s ESTRACK

• Adaptation of Russian on-board computer for deep space missions and ExoMars landed operations

• Development and qualification of throttleable braking engines for prospective planetary landing missions.

The above activities will be carried out in accordance with the ESA Policy on Planetary Protection, which complies with the COSPAR planetary protection recommendations.

The ExoMars Program scientific objectives are to:

• Search for signs of past and present life on Mars

• Investigate the water/geochemical environment as a function of depth in the shallow subsurface

• Investigate Martian atmospheric trace gases and their sources

• Investigate and solve scientific problems within the composition of Mars Surface long-living stationary platform.

A further objective of the ExoMars Program is to provide data relay services, through the TGO (Trace Gas Orbiter), for landed assets on the surface of Mars until the end of 2022.

All these objectives will be pursued as part of a broad international cooperation with Roscosmos and NASA, having as long-term goal an international Mars sample return mission.

The two ExoMars missions are foreseen, respectively, for 2016 (launched from Baikonur on March 14th, 2016) and July-August 2020.

The RSP (Rover and Surface Platform) mission of the ExoMars program of ESA, planned for launch in 2020, will deliver a European ExoMars Rover and a Russian Surface Platform to the surface of Mars. The primary objective is to land the rover at a site with high potential for finding well-preserved organic material, particularly from the very early history of the planet.




ExoMars RSP (Rover and Surface Platform)mission and system concept

The ExoMars RSP mission is foreseen to be launched into a direct transfer to Mars in July 2020. The transfer is ballistic; there are no deterministic Deep Space Maneuvers (DSM), only stochastic navigation maneuvers, some of which have a deterministic component for planetary protection reasons (Ref. 1). 4) 5) 6) 7) 8)

In the current mission design, the launch period for 2020 has a duration of 20 days. Out of these 20 days, with the six allocated Proton-M/Breeze-M launcher programs, it will be possible to have at least six days of launchability within the launch period arranged in groups of two: two days at the start, two in the middle and two at the end of the launch period. The days in between are gaps of non-launchability.

All dates in a given launch period lead to arrival on the same date, fixed on 19 March 2021. This simplifies operations planning and ground station booking, though it also removes one degree of freedom from the trajectory design.

The 2.9 ton SCC ( SpaceCraft Composite), developed by Thales Alenia Space in Italy under ESA contract, is composed of a CM (Carrier Module) and a 2 ton DM (Descent Module) provided by Roscosmos of Russia, which carries the 350 kg RM (Rover Module), also provided by ESA.

Industrial consortium: On the 2020 mission, Thales Alenia Space in Italy, is in charge of the design, development and verification of the entire system, the development of the Carrier Module navigation and guidance system and perform EDL/GNC development, the Rover System, including the Analytical Laboratory Drawer (ALD) as well as supplying basic parts of the DM, including the Radar Altimeter. In addition, Thales Alenia Space in Italy implements a deep technical partnership with Lavochkin for the development of the Descent Module (DM). OHB is in charge to develop the CM as well as ALD SPDS Mechanism and delegated tasks, the Rover Vehicle itself is provided by Airbus Defence and Space in UK. Leonardo is developing the ExoMars 2020 drill, which will dig into the Mars subsoil to a depth of two meters and ALTEC (Aerospace Logistics Technology Engineering), a Thales Alenia Space in Italy (63.75%) and ASI (36.25%) company – will also be responsible for the design, development and maintenance of the ROCC (Rover Operation Control Center) and for controlling the Rover on the Martian surface (Ref. 53).

ExoMars2022_Auto45

Figure 1: Illustration of the interplanetary transfer of the ExoMars 2020 mission (image credit: ExoMars collaboration)

ExoMars2022_Auto44

Figure 2: EDL (Entry Descent and Landing) phase of ExoMars (image credit: ExoMars collaboration)

The CM (Carrier Module), developed by OHB (Bremen, Germany), implements all the tasks needed to carry the whole system close to Mars atmospheric borders. It executes all the necessary maneuvers in interplanetary transfer and targets the trajectory such that the DM will enter at the required entry flight path angle and that the lander will touch down at the required location. Separation of the CM from the DM is currently foreseen to occur at EIP-30 minutes. The CM is not foreseen to operate after separation form the DM (Descent Module).

The CM and DM modules are mated by means of a separation mechanism bolted on both sides on 8 I/F points (pyrolocks on DM Rear Jacket side). Cable disconnection at separation is implemented by cutters.

The DM (Descent Module), developed by Lavochkin (Ru) with the contribution of key European Hardware and Software system contributions (see below), is a blunt-shape reentry capsule made of four separate main parts, FS (Front Shield), RJ (Rear Jacket), LP (Landing Platform) and PAS (PArachute System), performs the Entry, Descent and Landing on the Martian surface of a Landing Platform.

In particular the European Hard- and Software contributions consists of:

• The On-Board Computer, developed by Crisa (E), which manages the whole ExoMars 2020 mission during Cruise, EDL and Mars Surface Operation phases running the whole Mission Software,, developed by TAS (I).

• The IMU (Inertial Measurement Unit), developed by Airbus Defence and Space (ADS-F), which supports GNC during both Cruise and EDL phases

• The Radar Altimeter, developed by TAS (I), which is used to control the landing phase

• The UHF Transponder and Landing Platform Antenna, developed, respectively, by QinetiQ (UK) and Tryo (E), used for the proximity communications with the TGO

• The PArachute System, developed by TAS (F).

The DM accommodates the RM and provides for its egress to the Martian surface.

ExoMars2022_Auto43

Figure 3: ExoMars RSP selected landing sites (image credit: ExoMars collaboration)

The LP (Landing Platform), following the departure of the Rover, becomes SP (Surface Platform) for a long-lived stationary science instrument suite to study the Martian environment at the landing site. The 45 kg instrument suite with a planned lifetime of 2 Earth years is foreseen to consist of twelve instruments: In particular:

- TSPP (4 Cameras)

- MTK (Meteorology Package)

- RAT-M (Radiometer)

- MAIGRET (magnetometer)

- SAM (Seismometer)

- LaRa (Radioscience Mars Geodesy)

- PK (Dust Studies)

- M-DLS (Atmospheric Laser Spectrometer)

- FAST (Trace Gas Fourier Spectrometer)

- MGAK (Gas Analytical Package)

- Adron-EM (Neutron Spectrometer)

- HABIT (Humidity And Radiation Sensor)

The RM (Rover Module), developed under the responsibility of TAS (I), consists of a RV (Rover Vehicle) which carries an ALD (Analytical Laboratory and Drill) for subsurface sampling (down to 2 m).

The RV is made by Airbus Defence and Space (ADS-UK), the ALD is developed by TAS (I) with OHB (D) providing the sample processing and handling mechanisms and the Drill is developed by Leonardo (I) . The Rover Module contains European, Russian and NASA scientific payloads. The Rover is designed to deploy and egress from the DM Landing Platform, and to perform science exploration on the Mars surface with a suite of dedicated instruments.

RM Scientific package consists of the Pasteur Payload (PPL) composed of:

• 6 Survey Payloads

- Panoramic Cameras (WACs + HRC) PanCam

- Ground Penetrating Radar for Water Ice Subsurface Deposit Observation on Mars - WISDOM

- Close-Up Imager - CLUPI

- Mars Multispectral Imager for Subsurface Studies - Ma_Miss (in Drill)

- Neutron Detector – ADRON-RM (Roscomos - IKI)

- Infrared Spectrometer for ExoMars - ISEM (Roscomos - IKI)

• 3 Analytical Payloads (part of ALD)

- Infrared Microscope (MicrOmega)

- Raman Laser Spectrometer (RLS)

- Mars Organic Molecule Analyzer - (MOMA)

Note: The ALD is an integrated laboratory able to collect and prepare Martian terrain specimen from the Drill, handle and process them to the on board scientific instruments for in situ analysis, in a ultra-clean environment.


ExoMars RSP Mission Management

The 2020 mission operations, planning and execution will be performed by the MOC (Mission Operation Center) located at ESOC in Darmstadt with the support of:

• the SCC MOC

• the Rover Operations Control Center (ROCC)

• the Surface Platform Payload Operations Control Center (SPOCC)

• the TGO MOC, starting only from the EDL phase.

In particular ESOC/MOC will be responsible of controlling the SCC (and DM/LP) since Launcher separation up the Rover egress on the Mars surface. ESOC/MOC will be also responsible through ERCO (ESA Relay Coordination Office) in leading the ESA Data Relay Orbiter operations acting as data communication hub also to/from ROCC and SPOCC, starting from Launch until the egress of the RM after the LP landing on the Martian surface. Note: this very delicate last phase of the mission is named Post Landing to Egress (PLTE). 9)

After the RM egress, the ExoMars Rover mission will be independent and developed under the full responsibility of the ROCC while the Landing Platform Mission will be under the responsibility of the SPOCC (both via ERCO).

The X-band communications will use:

• The ESA Ground Station & Communications Subnet (ESTRACK)

• The NASA Ground Stations & Communication Subnet (DSN), to be considered for “critical phases“ like Safe Mode(s) or Flight Software upload or for “extreme contingencies” like the loss of SCC attitude

• The Russian Ground Stations & Communication Subnet (RNS).

During the LP (Landing Platform) mission the communication are performed via UHF band between On Board Computer (OBC1) and TGO (or NASA available Orbiters) during scheduled communication windows on visibility passes.

The Science Data Archive will make use of:

• The Pasteur payload Science Data Archiving and Dissemination located at ESAC, Spain

• The Science Data Archiving centers (NASA PDS and ESA PSA)

• Russian Science Ground Segment (NNK).

ExoMars2022_Auto42

Figure 4: Illustration of the ExoMars overall communication link (image credit: ExoMars collaboration)


ExoMars RSP system architecture

Hereafter, pictorial views of the main components of the ExoMars 2020 spacecraft together with the avionics block diagram are shown.

ExoMars2022_Auto41

Figure 5: ExoMars RSP Elements (image credit: ExoMars collaboration)

ExoMars2022_Auto40

Figure 6: Detail views of the Rover Module, ALD, Drill and Spacecraft Composite (image credit: ExoMars collaboration)

ExoMars2022_Auto3F

Figure 7: ExoMars avionics architecture (image credit: ExoMars collaboration)

ExoMars2022_Auto3E

Figure 8: Artist’s impression of the ExoMars 2020 rover (foreground), surface science platform (background) and the Trace Gas Orbiter (top), not to scale (image credit: ESA/ATG medialab)

Note: As of March 2020, the European Space Agency (ESA) and the Roscosmos Space Corporation have decided to postpone the launch of the second ExoMars mission to study the Red Planet to 2022 (Ref. 26). The mission is now called ExoMars 2022.

Figure 9: Replay of a press briefing on ExoMars, held on 12 March 2020. Participants were ESA Director General, Jan Wörner, the Director of Human and Robotic Exploration, David Parker, and Francois Spoto, the ExoMars Team Leader. Hosted by ESA’s Head of Communication, Philippe Willekens. Please note: Due to current travel restrictions, the briefing was hosted on ESA’s videoconferencing system, and broadcast on ESA Web TV. This has had an impact on the quality of the replay we are able to provide (video credit: ESA)


Launch: The new launch date of the ExoMars 2022 mission is scheduled in the 20 September-1 October 2022 launch window on a Proton rocket with a Breeze-M upper stage of Roscosmos from the Baikonur Cosmodrome (Kazakhstan) and arrive in the Oxia Planum region of Mars on 10 June 2023. 10)

Efficient orbital transfers, good communications and no large dust storms on the martian horizon make the chosen trajectory the fastest and safest choice.

When confronted with how to get to Mars, European and Russian teams have to juggle many factors. The mission analysis team at ESOC in Darmstadt, Germany, took into account the performance of Russia’s Proton launcher to identify a number of possible trajectories.

ExoMars2022_Auto3D

Figure 10: The path that ExoMars 2022 will follow to reach the Red Planet is set. The trajectory that will take the spacecraft from Earth to Mars in 264 days foresees a touchdown on the martian surface on 10 June 2023, at around 17:30 CEST (15:30 UTC), image credit: ESA

ExoMars2022_Auto2E

Figure 11: Overview of the ExoMars program timeline. The ExoMars program is a joint endeavor between Roscosmos State Corporation and ESA. Apart from the 2022 mission, it includes the Trace Gas Orbiter (TGO) launched in 2016. The TGO is already both delivering important scientific results obtained by its own Russian and European science instruments and relaying data from NASA’s Curiosity Mars rover and InSight lander. The module will also relay the data from the ExoMars 2022 mission once it arrives at Mars (image credit: ESA)

The ExoMars 2022 landing site is Oxia Planum, located in the northern hemisphere of Mars.

Figure 12: Scientists at TU Dortmund University have generated high-accuracy 3D models of the terrain in Oxia Planum on Mars. The DTMs (Digital Terrain Models) have a resolution of about 25 cm per pixel and will help scientists to understand the geography and geological characteristics of the region and to plan the path of the rover around the site. The region shown in this animation covers a large portion of the 120 x 19 km landing ellipse, with the eroded crater in the flyover towards the edge of the ellipse. Closer to the center, the terrain is relatively flat, which is more favorable for landing and operations. The DTMs are based on high-resolution imagery from the HiRISE instrument on NASA’s MRO (Mars Reconnaissance Orbiter), [video credit: TU Dortmund/NASA JPL-Caltech]




Development status of ExoMars 2022 - RSP (Rover and Surface Platform) Mission

• November 4, 2021: From panoramas to close-ups, from 3D maps to a wheel selfie, the Earth-bound twin of ESA’s Rosalind Franklin rover is testing the wide range of photo settings that will deliver the greatest science possible during the ExoMars mission on the Red Planet. 11)

- The scientific eyes of the rover are set on the Panoramic Camera suite known as PanCam. The replica atop the mast of the Ground Test Model rover is achieving a level of detail similar to what is expected from Rosalind Franklin in 2023.

ExoMars2022_Auto3C

Figure 13: Two stereo cameras at the top and at the bottom of the rover’s mast – NavCam and LocCam – allow the GTM to ‘see’ in three dimensions and identify the rocks and slopes ahead. The cameras guide the rover through safe paths and help avoid hazards. - Once the rover is on the move, two more sets of cameras – PanCam and CLUPI – come into play to get a whole picture of the site with high resolution imaging. These rover ‘eyes’ send panoramic and close-up images of the terrain to the operators at the Rover Operations Control Centre (ROCC). The images are essential to map the geological context and to help the scientists decide where the rover should stop and survey the surface in more detail (image credit: Thales Alenia Space)

- The target over the last few months has been the reddish and grainy, sometimes rocky surface of the Mars Terrain Simulator at the ALTEC premises in Turin, Italy.

Figure 14: Hovering over martian landscape. From panoramas to close-ups, from 3D maps to a wheel selfie, the Earth-bound twin of ESA’s Rosalind Franklin rover is testing the wide range of photo settings that will deliver the greatest science possible during the ExoMars mission on the Red Planet. - The target over the last few months has been the reddish and grainy, sometimes rocky surface of the Mars Terrain Simulator at the ALTEC premises in Turin, Italy. This simulated ‘overflight’ of the Mars-like terrain has been rendered using approximate color and geometric information. PanCam does not have just one pair, but three ‘science eyes’: one high-resolution and two wide-angle cameras. The two wide-angle cameras are set 50 cm apart and form a stereo pair that images what is in front of the rover from a vantage point about two meters above the ground. Scientists create 3D pictures and depth maps by overlaying simultaneous snapshots (video credit: ESA/ExoMars/PanCam team)

- “Since we will be looking for water and life on Mars, testing Rosalind Franklin’s main cameras is particularly important in the search for water-rich minerals,” explains Andrew Coates, PanCam principal investigator and Professor at the UCL Mullard Space Science Laboratory in the UK.

Science on top

- Engineers have packed as much science as they could into the camera system.

- The two wide-angle cameras (WACs) are set 50 cm apart and form a stereo pair that images what is in front of the rover from a vantage point about two meters above the ground. Scientists create 3D pictures and depth maps by overlaying simultaneous snapshots.

ExoMars2022_Auto3B

Figure 15: Four images taken by PanCam’s wide-angle cameras were stitched together to form this mosaic of the surface of the Mars Terrain Simulator at the ALTEC premises in Turin, Italy. Some footprints and the legs and ramps of Kazachok landing platform model are visible at the top right. - Color has been determined using three of PanCam’s 11 filters (image credit: ESA/ExoMars/PanCam team)

- “Besides plotting routes where the rover can go, these cameras help us do geology and atmospheric science,” says Andrew.

- The High Resolution Camera (HRC) has eight times the resolution of the wide-angle cameras to closely examine rock texture and grain size in color.

- This powerful camera “will help us investigate very fine details in outcrops, rocks and soils, find the most promising spots to drill, and take images of the samples before they are sent to the rover’s laboratory,” says Nicole Schmitz, PanCam co-principal investigator responsible for the high-resolution camera at the DLR Institute of Planetary Research, Germany.

ExoMars2022_Auto3A

Figure 16: ExoMars close-up. The ExoMars rover's Panoramic Camera (PanCam) includes a calibration target used to aid the calibration and operation of the camera once on Mars, and ‘fiducial markers’ such as the white dot seen on the top solar panel, used to get shapes right (image credit: ESA/ExoMars/PanCam team)

- Mounted below is the infrared spectrometer (ISEM) that analyses the geochemistry of the rocks. HRC and ISEM are a well-matched couple. They are co-aligned, so that scientists can see in the HRC images where ISEM took its measurements.

Rainbow eyes

- Humans and smartphones can only see colors in visible light. PanCam can ‘see’ in 19 colors, in the visible and near infrared wavelengths.

- Each of the wide-angle cameras has a filter wheel with 11 positions to look at the colors of the rocks and the martian sky.

ExoMars2022_Auto39

Figure 17: ExoMars PanCam filters. This may look like a collection of colorful contact lenses and in some respects there are some similarities: these are the filters through which the ExoMars rover – Rosalind Franklin – will view Mars in visible and near infrared wavelengths. - They are pictured here in their individual transport cases, before they were installed in the filter wheels of the Panoramic Camera, PanCam, which comprises two wide-angle cameras and a high-resolution camera. The wide-angle cameras are mounted at each end of the PanCam unit and form a stereo pair. Each camera has a filter wheel with 11 positions. Red, green and blue broadband imaging filters for color stereo imaging are common to both left and right cameras; the remaining eight are different between left and right to provide the range of filters needed for geological and solar imaging. The geology filters have been specifically selected to identify water-rich minerals and clays on Mars. - PanCam also hosts a high-resolution color camera and, sitting on a mast 2 m above the martian surface, will be fundamental in the day-to-day scientific operations of the rover, its images essential to assist with scientific decisions on where to drive to next, and where to target its drill. The rover will be the first with the capability to drill 2 m below the surface to retrieve samples for analysis in its onboard laboratory, seeking signs of life past or present. Combined with observations with its spectrometers, close-up imager, sub-surface sounding radar and neutron detector, the ExoMars rover has a powerful payload to explore the surface and subsurface of Mars. - The filters of the wide-angle camera shown here were integrated into their filter wheels in 2018 and completed calibration testing on 11 May 2019. Just last week the entire PanCam instrument was shipped from University College London’s Mullard Space Science Laboratory and delivered to Airbus, Stevenage, in the UK, where it will soon be built into the rover, giving Rosalind Franklin rover her science eyes. (image credit: M. de la Nougerede, UCL/MSSL)

- This special carousel will allow the rover to stare at the Sun, find the amount of dust in the atmosphere and measure the water vapor content during sunsets on Mars.

- A calibration target mounted on the rover’s solar array top deck, comprising a palette of stained glass similar to that of church windows, will help PanCam get its colors right.

ExoMars2022_Auto38

Figure 18: The ExoMars rover's Panoramic Camera (PanCam) includes a calibration target used to aid the calibration and operation of the camera once on Mars, and ‘fiducial markers’ such as the white dot seen on the top solar panel, used to get shapes right (image credit: ESA/ExoMars/PanCam team)

Mars-proof

- PanCam can withstand much harsher conditions than smartphone cameras on Earth. The hardware can cope with extreme temperatures, from zero degrees during the day down to –120 º Celsius during the cold martian nights. The sensors are also resistant to the high radiation environment during the journey to Mars and on the surface of the planet.

- “It was challenging to build a robust enough camera with adjustable focus to take high resolution images of very close and far away targets,” says Nicole.

ExoMars2022_Auto37

Figure 19: Image of the Rover Inspection Mirror (RIM) that will allow PanCam to capture images from different angles and to ‘see’ underneath the rover. The RIM on the Rosalind Franklin rover will have a highly polished surface for optimal imaging results (image credit: ESA/ExoMars/PanCam team)

- Rosalind Franklin can also take a look at herself – a small spherical mirror close to one of the rover’s wheels can be used to get a view underneath the rover. The Rover Inspection Mirror, mounted near a rover wheel, will enable PanCam to capture images from underneath the rover.

- There is yet another camera which will come in to play for martian shots in upcoming tests. The Close-Up Imager, CLUPI, will provide detailed views of the soil that is churned out by the drilling action. When the drill is in ‘stowed’ position this camera can also take photos of the landscape to the side of the rover.

• October 29, 2021: The Rosalind Franklin rover that will search for life on Mars has completed an important bakeout to help clean the rover from organic molecules from Earth. 12)

Figure 20: The rover sat inside a vacuum chamber for 120 hours at 35ºC at the Thales Alenia Space facility in Rome, Italy. The temperature is enough to sublimate hidden contaminants generated by the off-gassing of some of the rover’s internal parts, such as small bits of glue. The goal is to reduce as much as possible any contamination signature of Earth origin, to allow a clean detection of organic compounds on Mars (video credit: Thales Alenia Space)

- An additional analysis following the bakeout will be completed at a later date. That is, the rover’s Mars Organics Molecule Analyzer (MOMA), one of the instruments inside the rover’s analytical laboratory ultra-clean zone that will be used to determine if signs of life are present in the martian soil, will determine the chemical background in the rover’s laboratory by performing a measurement using an empty oven. Once on Mars, MOMA’s tiny ovens will host crushed soil samples that will be heated to allow the resulting vapor and gases to be analyzed with gas chromatography techniques to sniff out traces of organic compounds. The ‘sniff’ of the empty oven following the Earth-based bakeout will establish the background footprint against which future measurements on Mars can be compared.

- The rover is equipped with a unique drill that will bore down to 2 m below the martian surface and return samples for analysis. In the video, the rover is seen with its drill box in horizontal stowed position at the front. The drill tool also hosts a miniaturized spectrometer (Ma_MISS) to analyze the inner surface of the borehole, and a close-up imager (CLUPI) that will look at the drill fines and core sample before it enters the rover’s laboratory.

- Different instruments will work together to analyze the samples inside the rover. In addition to MOMA, the MicrOmega instrument will use visible and infrared light to characterize minerals in the samples, and a Raman spectrometer will use a laser to identify mineralogical composition.

- Using its panoramic and high resolution cameras and ground-penetrating radar, the ExoMars rover will seek out the most promising locations to drill, and to better understand the geological context of the Oxia Planum region that it will explore.

- Following completion of the bakeout, the thermo-vacuum chamber was re-pressurized and opened, and the rover prepared for its return journey to Thales Alenia Space in Turin. There, readiness for launch will continue until it ships to the launch site next year.

- Parts of the video are shown as timelapse.

• September 15, 2021: ESA’s Rosalind Franklin twin rover on Earth has drilled down and extracted samples 1.7 meters into the ground – much deeper than any other martian rover has ever attempted. 13)

- The successful collection of soil from a hard stone and its delivery to the laboratory inside the rover marks a promising milestone for the ExoMars 2022 mission.

- “The long-awaited success of the ExoMars drill on Earth would be a first in Mars exploration,” says David Parker, ESA’s director of human and robotic exploration. The deepest any drill has dug on the Red Planet to date is 7 cm.

Figure 21: ESA’s Rosalind Franklin twin rover on Earth has drilled down and extracted samples 1.7 m into the ground – much deeper than any other martian rover has ever attempted. The first samples have been collected as part of a series of tests at the Mars Terrain Simulator at the ALTEC premises in Turin, Italy. The replica, also known as the Ground Test Model, is fully representative of the rover set to land on Mars. The drill was developed by Leonardo, while Thales Alenia Space is the prime contractor for ExoMars 2022. The ExoMars program is a joint endeavor between ESA and Roscosmos (video credit: ESA/Thales Alenia Space)

- The Rosalind Franklin rover is designed to drill deep enough, up to two meters, to get access to well-preserved organic material from four billion years ago, when conditions on the surface of Mars were more like those on infant Earth.

Drill operations

- Rosalind Franklin’s twin has been drilling into a well filled with a variety of rocks and soil layers. The first sample was taken from a block of cemented clay of medium hardness.

- Drilling took place on a dedicated platform tilted at seven degrees to simulate the collection of a sample in a non-vertical position. The drill acquired the sample in the shape of a pellet of about 1 cm in diameter and 2 cm long.

- Rosalind Franklin’s drill retains the sample with a shutter that prevents it from dropping out during retrieval. Once captured, the drill brings the sample to the surface and delivers it to the laboratory inside the rover.

- With the drill completely retracted, the rock is dropped into a drawer at the front of the rover, which then withdraws and deposits the sample into a crushing station. The resulting powder is distributed to ovens and containers designed to perform the scientific analysis on Mars.

- “The reliable acquisition of deep samples is key for ExoMars’ main science objective: to investigate the chemical composition —and possible signs of life— of soil that has not been subjected to damaging ionizing radiation,” says ExoMars project scientist Jorge Vago.

ExoMars2022_Auto36

Figure 22: ESA’s Rosalind Franklin twin rover on Earth has drilled down and extracted samples 1.7 m into the ground – much deeper than any other martian rover has ever attempted. With the drill completely retracted, the rock is dropped into a drawer at the front of the rover, which then withdraws and deposits the sample into a crushing station. The resulting powder is distributed to ovens and containers designed to perform the scientific analysis on Mars (image credit: Thales Alenia Space)

A unique drill for Mars

- The ExoMars drill is an assembly of mechanisms that rely on an automated choreography of tools and mounting rods. “The design and construction of the drill has been so complex that this first deep drilling is an extraordinary achievement for the team,” says Pietro Baglioni, ExoMars rover team leader.

- Rosalind Franklin’s drill works on rotation. A series of tools and extension rods are fitted to form a ‘drill string’ and can reach the full 2 m length when all are connected.

- The drill can penetrate the ground at 60 rotations per minute, depending on the consistency of the soil. Digging into sandy or clay solid materials could take between 0.3 and 30 mm per minute.

- The drill has also a two-degree of freedom positioner that allows it to discharge the sample at the right angle into the rover laboratory.

• September 3, 2021: The ExoMars team have performed important parachute drop tests as crucial preparation for a safe touchdown on Mars in 2023. The European Rosalind Franklin rover will search for signs of past life beneath the surface of Mars with its unique two meter drill and onboard laboratory. The Russian surface science platform Kazachok will study the environment at the landing site. Landing on Mars is always a challenging endeavor and all possible parameters are taken into account. 14)

Figure 23: Drop tests for touchdown on Mars (video credit: ESA)

• July 2, 2021: After several weeks of bad weather and strong winds, the latest pair of high-altitude drop tests of the ExoMars parachutes took place in Kiruna, Sweden. 15)

Figure 24: Slow motion footage of ExoMars parachute during a high-altitude drop test. The video shows the 15 m-wide first stage main parachute being deployed flawlessly at supersonic speeds during a drop test on 24 June at the Swedish Space Corporation Esrange facility (image credit: ESA)

- Each high altitude drop test saw a dummy descent module lofted to an altitude of 29 km by a stratospheric balloon inflated with helium. Following release, the pilot chute extraction initiates with a controlled extraction of the main parachute from the doughnut bag.

- The first test focused on validating the Airborne Systems backup supersonic parachute – the first drop test for this parachute in this ExoMars test campaign.

- These tests took place after several weeks of bad weather in Kiruna, and follow the high-altitude drop tests in 2019, during which critical damage to both parachute canopies was observed.

- The ESA-Roscosmos ExoMars mission, with the Rosalind Franklin rover and Kazachok surface platform, is scheduled for launch in September 2022. After a nine-month interplanetary cruise, a descent module containing the rover and platform will be released into the martian atmosphere at a speed of 21,000 km/hr.

- Slowing down requires a thermal shield, two main parachutes – each with its own pilot chute for extraction – and a retro rocket propulsion system triggered 20 seconds before touchdown. The 15 m-wide first stage main parachute opens while the descent module is still travelling at supersonic speeds, and the 35 m-wide second stage main parachute is deployed at subsonic speeds.

• June 4, 2021: The replica ExoMars rover that will be used in the ROCC (Rover Operations Control Centre) to support mission training and operations is fully assembled and has completed its first drive around the Mars Terrain Simulator at ALTEC, in Turin, Italy. 16)

- The rover ‘Ground Test Model’ (GTM) will play a critical role in the coming months as rover operators prepare for Rosalind Franklin’s arrival in Oxia Planum on Mars in June 2023.

- The GTM already completed important commanding tests while stationary in the Thales Alenia Space cleanroom, and now it has been fully assembled in the Mars Terrain Simulator.

- To best represent what the real Rosalind Franklin rover will experience on Mars, the GTM is supported by a device to recreate the martian gravity level. Mars gravity is about one-third of Earth’s so two-thirds of the rover’s 290 kg total mass is absorbed by the ‘Rover Unloading Device’ attached to the GTM from the ceiling of the test area.

ExoMars2022_Auto35

Figure 25: This image shows the rover tackling a side slope in the Mars Terrain Simulator. The ‘Rover Unloading Device’ attached to the GTM from the ceiling is clearly visible – this acts to support the weight of the rover to help recreate martian gravity, which is one-third that of Earth’s (image credit: Thales Alenia Space)

- Rover operators will rehearse numerous activities with the replica rover, from moving across different terrain to deploying its science instruments.

- The first tests were simple driving activities: moving over different surfaces, tackling a side slope, small hill, and boulder-strewn terrain. On top of the hill, the rover was also commanded to take a panoramic image sequence.

ExoMars2022_Auto34

Figure 26: The replica ExoMars rover – the GTM (Ground Test Model) – that will be used in the Rover Operations Control Centre to support mission training and operations has completed its first drive around the Mars Terrain Simulator. As part of the exercise, the GTM’s black-and-white navigation cameras (NavCam) took a series of images to create this panoramic view (image credit: ESA/ExoMars/NavCam)

- The test paves the way for more advanced activities in the coming months. For example, while the first driving test was executed by following direct drive commands, upcoming is a trajectory control test: that is, the rover will automatically correct deviations induced by the topography and roughness of the terrain to stay within 20 cm of the commanded path. Later, more advanced autonomous driving functions will be tested whereby the rover will use onboard computing capabilities to assess the safety of the terrain on its own.

- The GTM will also be used in the coming weeks for drilling activities. The ExoMars rover is unique in Mars exploration in that it will be first to drill 2 m below the martian surface to retrieve samples for analysis in its sophisticated onboard laboratory. Underground samples are more likely to include biomarkers, since the tenuous martian atmosphere offers little protection from radiation and photochemistry at the surface. Understanding if life once existed on Mars is a key question in planetary science, and at the heart of the ExoMars program.

• May 21, 2021: A series of ground-based high-speed extraction tests confirm the readiness of a new and upgraded parachute and bag system for a high-altitude drop test in early June, part of critical preparations to keep the ExoMars 2022 mission on track for its next launch window. 17)

- The tests, conducted with NASA/JPL’s dynamic extraction test rig in California, USA, focused on demonstrating the readiness of new equipment developed by Airborne Systems, as well as verifying changes to the parachute and bag provided by Arescosmo.

Figure 27: In this video the first main parachute and bag provided by Arescosmo is featured. The tests took place in April 2021 (video credit: NASA/JPL-Caltech)

- A series of clips from different angles and at different speeds showing parachute extraction tests for the ExoMars 2022 mission’s first main parachute using a NASA/JPL test rig powered by compressed air. The lid of the parachute assembly is pulled along a suspended cable at high speed while the end of the assembly is fixed to a wall. When the release mechanism is activated, the parachute bag is pulled away from the parachute at the target speed, mimicking the extraction as it will be on Mars. At the highest speeds, the tests enable the extraction to take place at more than 200 km/h.

- The ESA-Roscosmos ExoMars mission, with the Rosalind Franklin rover and Kazachok surface platform contained in a descent module, requires two main parachutes – each with its own pilot chute for extraction – to help slow it down as it plunges through the martian atmosphere. The 15 m-wide first stage main parachute will open while the descent module is still travelling at supersonic speeds, and the 35 m-wide second stage main parachute is deployed once at subsonic speeds.

- The latest round of extraction tests focused on the first main parachute provided by both companies. Arescosmo addressed open issues from previous unsuccessful tests: a new bag design and a revised approach to folding to avoid line-twisting upon extraction. The Airborne Systems parachute and bag also completed several rounds of development tests to validate the extraction process.

Figure 28: ExoMars parachute extraction tests – Airborne Systems (video credit: NASA/JPL-Caltech)

- “Both performed very well in the tests,” says Thierry Blancquaert, ESA ExoMars program team leader. “Close inspection showed that a few small areas in the parachute canopy had been subject to friction during the bag extraction process, reducing the strength of the fabric in these few places. Cross-examination with the video footage allowed the Airborne Systems team to pinpoint the moment the damage occurred and make modifications to the bag and packing of the parachute. This could be done with a remarkably quick turnaround of just a couple of days, to arrive at a successful result.”

- The parachute had originally been packed inside the bag around the central mortar that contains the pilot chute, such that upon extraction it unwrapped in a 360º fashion. Folding the band of the parachute in two layers, so that it first unfolds in one direction and then 180º in the other direction, proved to reduce the tendency of the canopy to experience friction incurred by wrapping around the mortar.

- The Airborne Systems first main parachute will now move forward for testing in its first high-altitude drop test scheduled at the start of June from Kiruna, Sweden. Two high-altitude balloons and dummy descent modules are available in the June window, which will see the descent vehicle dropped under the parachute from a stratospheric balloon at an altitude of about 29 km.

- For Arescosmos, the first main parachute will act as a back-up, and instead the focus for them will turn to the second main parachute. Upgrades made to this parachute and bag were already implemented and tested in dynamic extraction tests in December 2020, which included using stronger parachute lines and reinforced material around the parachute apex. For the upcoming high-altitude test, a slightly smaller sized pilot chute (3.7 m compared with 4.5 m previously) will also be implemented, aimed at reducing the energy – and therefore the friction – generated upon extraction of the second main parachute from its bag. This cannot be tested on the ground-based rig in advance, which is only focused on the main parachute extraction from its bag.

- Further ground-based dynamic extraction test slots are anticipated during August to prepare for another pair of high-altitude drop tests foreseen for October/November this year, from Oregon, USA. Further high-altitude test opportunities are also considered during the first half of 2022. Subsequent test configurations will largely depend on the outcome of the upcoming tests in Kiruna, although it is expected to repeat successful tests at least once more.

- High-altitude drop tests require complex logistics and strict weather conditions, making them difficult to schedule, while the ground tests can be repeated on a quick turnaround, buying significantly more time in the test campaign and reducing risk by allowing more tests to be conducted on a short time frame.

- “Our strategy of having two highly qualified teams working on the parachutes, together with the availability of the ground-test rig, is already paying off and we are ready and looking forward to the next high-altitude drop tests,” says Thierry. “Landing safely on Mars is a notoriously difficult task. Investing our efforts in this test strategy is an essential part of ensuring a successful mission when we arrive at Mars in 2023.”

- All parachute system qualification activities are managed and conducted by a joint team involving the ESA project (supported by Directorate of Technology, Engineering and Quality expertise), Thales Alenia Space Italy (prime contractor, in Turin), Thales Alenia Space France (PAS lead, in Cannes), Vorticity (parachute design and test analysis, in Oxford) and Arescosmo (parachute and bags manufacturing, in Aprilia). NASA/JPL-Caltech has provided engineering consultancy, access to the dynamic extraction test facility, and on-site support. The extraction tests are supported through an engineering support contract with Airborne Systems, who also provided NASA’s Mars 2020 parachutes, and by Free Flight Enterprises for the provision of parachute folding and packing facilities. Airborne Systems is also providing parachute design and manufacturing services since 2021.

- Near Space Corporation provide the balloon launch services in Oregon. The Swedish Space Corporation Esrange facility provides the balloon launch services in Kiruna.

• March 5, 2021: ExoMars 2022 goes for a spin. 18)

a) The full ExoMars 2022 mission comprising the carrier module, descent module, Kazachok surface platform and Rosalind Franklin rover have completed essential ‘spin tests’ in preparation for their journey to Mars.

b) Rosalind Franklin’s rover twin on Earth has executed trial science activities for the first time, including drill sample collection and close-up imaging.

c) A new parachute strategy has been adopted ahead of the next series of high altitude drop tests.

Balancing act

- Essential preparation for the mission’s flight to Mars and plunge through the planet’s atmosphere is to ensure the spacecraft is perfectly balanced when spinning.

- The ExoMars 2022 mission comprises four main units: the ESA-led Rosalind Franklin rover and Roscosmos-led Kazachok surface platform that will perform science activities on the surface of Mars, the descent module in which they are encapsulated, and the carrier module that will transport them from Earth to Mars following launch.

Figure 29: This movie shows the complete spacecraft composite of the ExoMars 2022 mission in an anechoic chamber at Thales Alenia Space’s facilities in Cannes, France, undergoing a dynamic balancing test. This is to ensure the spacecraft is perfectly balanced when spinning in space (video credit: Thales Alenia Space)

- The spacecraft comprises the carrier module (the eight-sided structure), the descent module (the white module in the center) and the Rosalind Franklin rover and Kazachok surface platform, which are encapsulated inside the descent module. — The spacecraft composite was subjected to a spin up to 30 rpm, corresponding to a centrifugal acceleration of 2g at the outer edge of the heatshield.

- During the cruise to Mars the complete ‘spacecraft composite’ (comprising all four units) will be spinning at about 2.75 revolutions per minute, in order to stabilize itself on its trajectory. The dynamic balancing test checks that there are no imbalances that could induce wobbles in space that would require too much fuel to compensate. It is also important that the spacecraft is balanced so that it spins smoothly around its rotation axis, to keep its antenna pointed to Earth, so that a communication link is possible.

- Once the descent module is released close to Mars, about 30 minutes prior to atmospheric entry, the original spin rate is maintained until atmospheric effects take over, and when the first parachute is deployed. Complete despinning occurs once the propulsion system on the landing platform kicks in close to the surface of Mars.

- Therefore, two dynamic balancing tests were conducted: one test for the complete composite spacecraft, and one without the carrier module, for the descent module with rover and platform inside. In all the tests, which were conducted at Thales Alenia Space’s cleanroom facilities in Cannes, France, the actual flight modules were used.

- During the test with the spacecraft composite, the unit was subjected to a spin up to 30 rpm, corresponding to a centrifugal acceleration of 2g at the outer edge of the descent module’s heatshield.

- Upon completion of the environmental testing at Cannes, the spacecraft will return to Thales Alenia Space’s facilities in Turin, Italy, mid-March, for further functional testing.

Rehearsing rover science

- Meanwhile at the Rover Operations Control Centre (ROCC) in Turin, the Rosalind Franklin ‘ground test model’ completed an exciting milestone. While the replica rover is still stationary in the clean room, the operations team commanded it like they would when finally on the surface of Mars.

- “It’s really exciting to have used for the first time the ROCC chain of commands like we will during the real mission,” says Luc Joudrier, ESA’s ExoMars rover operations manager. “We defined the rover’s ‘Activity Plan’, sent it to the rover, and afterwards ingested and processed the data. It’s great to see the ROCC working like this.”

- One of the activities was to test Rosalind Franklin’s one-of-a-kind drill. It is the first time in Mars exploration that a rover will be able to retrieve soil samples down to 2 m underground, where ancient biomarkers may still be preserved from the harsh radiation on the surface, and deliver them to the onboard laboratory. In the recent exercise, the replica rover was commanded to deploy its drill with a dummy sample onboard, transporting it to the Analytical Laboratory Drawer. In reality, on Mars, a sophisticated laboratory will analyze the sample’s composition.

- The rover was also commanded to image the sample with its Close-Up Imager, situated at the bottom of the drill unit.

- The suite of high resolution panoramic cameras were also activated as part of an imaging calibration exercise.

ExoMars2022_Auto33

Figure 30: As part of a recent system verification test, the camera suite onboard the replica ExoMars rover was commanded to capture images via the Rover Operations Control Centre. PanCam, the instrument containing the rover's scientific eyes, sits about 2 m above surface level, and will provide panoramic views of the martian landscape around the rover with two Wide Angle Cameras, along with High Resolution Camera images of the surface. The High Resolution Camera can also, along with CLUPI, image samples collected by the rover’s unique drill, before they enter into the onboard laboratory. An example of an image of a ‘dummy’ sample on the rover’s sample tray is shown in the bottom inset image. - Towards the front of the rover in the main view, in the direction in which the rover is ‘looking’, is the PanCam calibration target, which will play an essential role in calibrating color images and data from the infrared spectrometer (ISEM). This calibration target is also seen close to the centre of the middle inset image, from the perspective of the rover cameras. - Three fiducial markers located around the rover deck, forming two right angled triangles, will allow in situ geometric calibration and triangulation to get 3D shapes right. One of these markers can be just made out in the top inset image on the very edge of the rover.- The black and white images shown here from the High Resolution Camera are not fully representative of the flight model – the ‘real’ rover has a different filter and focus mechanism – but were taken as part of the first test campaign using commands directly from the operations centre (image credit: Rover image: Thales Alenia Space; PanCam WAC and HRC images courtesy ESA/ExoMars/PanCam team)

- Soon the twin rover will move into the ROCC’s Mars Terrain Simulation to trial mobility commands and other functional tests. Rover operators and scientists will rehearse these simulations many times and focusing on different rover activities as part of their training between now and the mission arriving on Mars.

ExoMars2022_Auto32

Figure 31: The Rosalind Franklin ‘ground test model’ being commanded for the first time via the Rover Operations Control Centre, in Turin, Italy. The rover is situated on a tilt table and is pictured here with its drill box inclined. As part of recent system verification tests, the replica rover was commanded to deploy its drill with a dummy sample onboard, transporting it to the Analytical Laboratory Drawer. - In reality, on Mars, a sophisticated laboratory inside the rover will then analyze the sample’s composition. It is the first time in Mars exploration that a rover will be able to retrieve soil samples down to 2 m underground, where ancient biomarkers may still be preserved from the harsh radiation on the surface. The tilt table allows engineers to test the rover’s capabilities in a range of inclinations (image credit: Thales Alenia Space)

ExoMars2022_Auto31

Figure 32: Closeup of the Rosalind Franklin rover’s drill delivering a ‘dummy’ sample to the sample tray. The image is of the rover ‘ground test model’ – a replica rover situated at the Rover Operations Control Centre, in Turin, Italy, and used for rehearsing commands. The rover will be the first in Mars exploration that will be able to retrieve soil samples down to 2 m underground, where ancient biomarkers may still be preserved from the harsh radiation on the surface. Upon retrieval of the samples, they will be analyzed in a sophisticated laboratory inside the rover (image credit: Thales Alenia Space)

New parachute test strategy

- The two main parachutes that will help deliver the mission safely to the surface of Mars are scheduled for the next high altitude drop test in May/June this year, from Kiruna, Sweden. Following the high altitude drop test in November 2020, which saw some localised damages to both parachute canopies, a new way forward has been adopted.

- “We have revised our strategy to give us the best chance possible in qualifying the ExoMars parachutes before the end of this year in order to meet our 2022 launch window,” says Thierry Blancquaert, acting ExoMars program team leader. “We have therefore invited a second expert parachute manufacturer to contribute to the ExoMars program by providing us with additional canopies to use in the upcoming opportunities.”

- In addition to the parachutes from Arescosmo, newly manufactured parachutes from Airborne Systems, who helped deliver NASA’s Perseverance rover safely to Mars earlier this month, are also now being manufactured. Airborne Systems also supports the ground-based parachute extraction tests carried out at NASA/JPL.

- Unlike the one-parachute and sky-crane approach used by NASA’s Perseverance rover to land on Mars, the ESA-Roscosmos ExoMars mission requires two main parachutes – each with its own pilot chute for extraction – to help slow the descent module as it plunges through the atmosphere.

• December 8, 2020: The ExoMars Rosalind Franklin rover is seen here sitting on top of the Kazachok surface science platform in stowed configuration, rather similar to how it will journey to Mars in 2022. 19)

ExoMars2022_Auto30

Figure 33: The duo were mated in a dedicated clean room at Thales Alenia Space (TAS), Cannes, together forming the so-called ‘landing module’. The latest round of tests include electrical, power and data transfer checks between the two elements (image credit: TAS)

- The landing module will later be integrated inside the descent module for mass balancing checks, together with the carrier module that will transport the mission to Mars.

- This is not the last time the two flight models will be mated. After completion of the tests in Cannes, the rover will return to the TAS cleanrooms in Turin, Italy, for further functional testing, before being shipped to the launch site in Baikonur.

- In this image, the back right solar panel of the landing platform is seen partially deployed. The front of the rover is seen, with its iconic drill stowed in horizontal position. A first in Mars exploration, the drill will extract samples down to a maximum of two meters, where ancient biomarkers may still be preserved from the harsh radiation on the surface, and deliver them to the rover’s sophisticated laboratory for analysis.

- The mission is targeting a September 2022 launch window, landing on Mars in June 2023. Its goal is to determine the geological history of the landing site at Oxia Planum, once thought to host an ancient ocean, and to determine if life could ever have existed on Mars.

- The ExoMars program is a joint endeavor between ESA and the Russian State Space Corporation, Roscosmos.

- The integration activities at Cannes were carried out by Thales Alenia Space and Airbus Defence and Space teams.

• November 18, 2020: The parachute system that will help deliver the Rosalind Franklin ExoMars rover to Mars has completed the first full-scale high altitude drop test with redesigned elements following two unsuccessful tests last year. Parachute extraction and deceleration proceeded as expected, the test vehicle landed safely and the test parachutes were recovered. However, some canopy damage occurred, pointing to the early inflation process for the focus of further improvements. 20)

- “Landing on Mars is extremely difficult, with no room for error,” says ExoMars Program Team Leader Francois Spoto. “The latest test was a good step forward but is not yet the perfect outcome we are seeking. Therefore, we will use the extensive test data we have acquired to refine our approach, plan further tests and keep on track for our launch in September 2022.”

ExoMars2022_Auto2F

Figure 34: ExoMars 2022 parachute deployment sequence (image credit: ESA)

Parachute profile

- The Rosalind Franklin rover and Kazachok surface platform are encapsulated inside a descent module that will be transported to Mars by a carrier module. The descent module is equipped with two parachutes – each with its own pilot chute for extraction – to help slow it down prior to landing on Mars. Once the atmospheric drag has slowed the descent module from around 21 000 km/h to 1700 km/h, the first parachute will be deployed. Some 20 seconds later, at about 400 km/h, the second parachute will open. Following separation of the parachutes about 1 km above ground the braking engines will kick in to safely deliver the landing platform onto the surface of Mars. The entire sequence from atmospheric entry to landing takes just six minutes.

- The complete parachute descent system needs testing and verifying on Earth, for which high altitude drop tests play an essential role to help represent the low atmospheric pressure on Mars – a vital aspect when considering parachute inflation.

New round of high altitude tests

- The test conducted from Oregon, USA was delayed from March 2020 due to COVID-19 restrictions, forest fires and unfavorable wind conditions. Logistics re-planning and compatible weather finally enabled it to take place 9 November.

- The test setup saw the drop test vehicle lofted to a height of 29 km in a stratospheric balloon.

- The first main parachute had an upgraded parachute bag and a Kevlar reinforcement around the vent hem (that is, around the vent 'hole' in the center of the parachute). The second main parachute had several reinforcement rings and an upgraded parachute bag, but not reinforced parachute lines, which are also planned. The fully upgraded second parachute will be used in a drop test at the Swedish Space Corporation ESRANGE facility in Kiruna, Sweden in mid-2021. The reinforcement rings were introduced to help prevent the dramatic tearing of the canopies witnessed during tests in 2019.

- The timeline of the latest test, including extraction and deceleration, went exactly to plan. However, four tears in the canopy of the first main parachute and one in the second main parachute were found after recovery. The damage seemed to happen at the onset of the inflation, with the descent otherwise occurring nominally.

- The team are now analyzing the test data to determine further improvements for the next tests. Planning is underway for future tests in the first half of next year, to ‘qualify’ the complete parachute system ready for launch in September 2022.

- Once safely in the Oxia Planum region of Mars in June 2023, the Rosalind Franklin rover will drive off the platform and begin its science mission. It will seek out geologically interesting sites to drill below the surface, to determine if life ever existed on our neighbor planet.

ExoMars2022_Auto2E

Figure 35: Overview of the ExoMars program timeline (image credit: ESA)

- All parachute system qualification activities are managed and conducted by a joint team involving the ESA, TASinI (prime contractor), TASinF (PAS lead), Vorticity (parachute design and test analysis) and Arescosmo (parachute and bags manufacturing).

- The ExoMars program is a joint endeavor between ESA and Roscosmos. In addition to the 2022 mission, it also includes the Trace Gas Orbiter (TGO) launched in 2016. The TGO is already both delivering important scientific results of its own and relaying data from NASA’s Curiosity Mars rover and InSight lander. It will also relay the data from the ExoMars 2022 mission once it arrives at Mars in 2023.

• November 4, 2020: ExoMars platform and rear jacket. 21)

ExoMars2022_Auto2D

Figure 36: The Kazachok landing platform of the ExoMars mission is revealed as the descent module rear jacket is lifted above. The platforms ramps and solar panels are seen in folded configuration. Kazachok currently sits on a supporting trolley where eventually the front shield will be fitted. The platform and Rosalind Franklin rover will undergo joint testing at the Thales Alenia Space facility in Cannes, France, in the coming weeks (image credit: Thales Alenia Space)

• September 29, 2020: Last Sunday night a long, heavy truck hit the road escorted from Italy with a precious cargo. While most of the citizens in Turin prepared to enjoy their dinner, several modules of the ExoMars spacecraft left the Thales Alenia Space facilities. Next stop: Cannes, France. 22)

- The journey took less than a day. Besides stringent controls in dedicated clean rooms and tents – amongst the cleanest places on Earth – to avoid any biological contamination from Earth to Mars, Russian and European teams took a number of precautionary measures to minimize the risk of spreading the Coronavirus.

- Workers remained fully shrouded within ‘bunny suits’ to control any kind of contamination during the packing of the ExoMars elements before shipment. In this image, two engineers work on ESA’s Rosalind Franklin rover with its solar panels and drill folded.

ExoMars2022_Auto2C

Figure 37: Workers remained fully shrouded within ‘bunny suits’ to control any kind of contamination during the packing of the ExoMars elements before shipment. In this image, two engineers work on ESA’s Rosalind Franklin rover with its solar panels and drill folded. The white capsule with golden legs in the background corresponds to the carrier module integrated with the Russian surface platform, dubbed Kazachok. These two elements will reunite with the rover in Cannes at the end of October (image credit: Thales Alenia Space)

- The microbiological samples taken after rigorous cleanliness procedures showed that the contamination levels were within the requirements for a safe landing on Mars.

- Engineers will be busy with a series of tests in the next months. The whole spacecraft will undergo thermal, vacuum and acoustic tests during the next months in France. Coming up is the deployment of the solar panels that will power up the Rosalind Franklin rover on Mars.

- Teleworking is nothing new to the ExoMars spacecraft and teams. There will be some remote operations in France before the year ends. Rosalind Franklin will be commanded from the Rover Operations Control Center (ROCC) at the ALTEC premises in Turin, Italy, to rehearse cruise and deployment maneuvers once on the surface of Mars.

- ExoMars leaves behind an intense period of testing in Italy since April, from health checks to assembly, maintenance operations and leak tests. Fasteners have been added to the solar panels of the rover to increase robustness during the unfolding and surface operations on the Red Planet.

- Rosalind Franklin is fitted with a drill – a first in Mars exploration – to extract samples down to a maximum of two meters, where ancient biomarkers may still be preserved from the harsh radiation on the surface, and hosts a sophisticated laboratory to analyze the samples on Mars.

- Both drill and laboratory have been extensively tested using soil similar to that expected on Mars and under conditions representative of the martian environment.

- The ExoMars program is a joint endeavor between ESA and the Russian State Space Corporation, Roscosmos.

• July 22, 2020: As Mars exploration prepares for a rebirth, a European rover tunes up its gear for the challenges ahead. 23)

- On 23 July, ESA and dozens of industrial partners will assess the readiness of the ExoMars robotic explorer, named Rosalind Franklin, for a trip to the Red Planet in 2022. The European rover will drill down to two meters into the martian surface to sample the soil, analyze its composition and search for evidence of life buried underground.

- The rover successfully proved that it is fit to endure the martian conditions during the environmental test campaign earlier this year in Toulouse, France. This laboratory on wheels withstood temperatures as low as –120°C and less than one hundredth of Earth’s atmospheric pressure to simulate the extremes of its journey through space and on the surface of Mars.

- By the end of this week a more robust set of solar panels will begin its trip to reunite with the rover after some cracks were detected during those environmental tests. New fasteners are in place and will be on their way from the Airbus facilities in Stevenage, in the UK, to Thales Alenia Space in Turin, Italy, where the rover awaits power up at the beginning of August.

- The disruptions caused by the coronavirus pandemic have added new obstacles for industry across Europe on the road to Mars. Parachute and interface tests are expected to resume in October.

- New missions to Mars launch from a broad range of nations – while the United Arab Emirates’ historic first mission to Mars lifted off from Japan last Sunday, China is preparing to launch tomorrow its first rover to Mars, known as Tianwen-1. NASA’s Mars 2020 mission is set to take off with the Perseverance rover onboard next week, on July 30.

- These missions focus on the search for evidence of life on the Red Planet and a better understanding of how Earth and Mars evolved so differently.

- “We hope that ESA’s Rosalind Franklin rover will help write a new page in Mars exploration by allowing us to study organic molecules on the spot,” says Jorge Vago, ESA’s ExoMars project scientist.

- Dr Rosalind Franklin, the prominent scientist behind the discovery of the structure of DNA, one of life’s most important molecules, would have been 100 years old on 25 July this year. Her niece, also named Rosalind Franklin in her memory, points out that the X-ray diffraction expert “never conceived science as a race of competitors.”

- After a visit to ESA’s technical center in the Netherlands last year, Rosalind believes that her aunt would have loved the ExoMars team spirit. “The work of ESA engineers on the rover struck me – they really do it for the results, not for themselves. This is what Rosalind Franklin was all about: commitment and dedication to science,” said Rosalind from her home in California, US.

- A series of talks and events is taking place around the globe this week to celebrate the centenary of this “woman of integrity who went after scientific discovery for the betterment of humankind”, as her niece describes her. The legacy of the scientist lives on today, and the ExoMars rover will help leave her symbolic footprint on Mars in 2023.

ExoMars2022_Auto2B

Figure 38: The ExoMars rover is part of the ExoMars program, a joint endeavor between ESA and the Russian State Space Corporation, Roscosmos (image credit: Airbus)

• May 15, 2020: The second ExoMars mission, scheduled for launch to the Red Planet in 2022, is taking advantage of the extra time to upgrade some of the rover’s instruments and get ready for the next parachute high-altitude drop tests. 24)

- The new launch date on the horizon is allowing more margin for replacements and repairs to the ExoMars Rosalind Franklin rover.

- The solar panels that will help the rover survive the cold Martian nights will gain in strength. After some cracks were detected during the environmental tests earlier this year, new fasteners will be installed to reinforce the interface between panels and holding brackets at the Airbus facilities in Stevenage, in the UK.

- The flight model of the rover remains at Thales Alenia Space in Turin, Italy, for routine maintenance operations, such as battery charge and cleanliness checks.

- Strict microbiological controls are key to make sure that ExoMars does not introduce terrestrial contamination to the Red Planet. This is to comply with the stringent planetary protection requirements and to avoid false positives in the scientific measurements – what scientists call ‘forward contamination’.

- Scientists and engineers are looking into replacing the secondary electronics box on the Mars Organic Molecule Analyzer, MOMA, an instrument capable of detecting organic molecules and investigate the potential origin, evolution and distribution of life on Mars.

ExoMars2022_Auto2A

Figure 39: The Rosalind Franklin rover of the joint ESA-Roscosmos ExoMars mission completed a series of environmental tests at the end of 2019 at Airbus, Toulouse, France. This included final thermal and vacuum tests where the Rover is heated and cooled to simulate the temperatures of its journey through space and on the surface of Mars. For example, Rosalind Franklin can expect temperatures dropping to –120ºC outside, and –50ºC inside the rover once on Mars. It must also be able to operate in less than one hundredth of Earth’s atmospheric pressure – and in a carbon dioxide-rich atmosphere (image credit: Airbus)

- The infrared spectrometer that will analyze minerals on the surface, ISEM, might also be replaced with a spare model with better performance.

- One of the cameras on top of the rover’s drill designed to acquire high-resolution and color images of the rocks and soil around the rover – the Close-Up Imager, CLUPI – is having a software upgrade.

- “The instruments were already in great shape, but having found the time to make these improvements is fantastic for our scientific mission on Mars,” says Jorge Vago, ESA’s ExoMars project scientist.

ExoMars2022_Auto29

Figure 40: The ExoMars close-up imager, Clupi, underwent final calibration tests at ESA’s technical facility in the Netherlands, before being shipped to Stevenage to be attached to the rover’s drill unit. The imager will provide close-up views of the soil that is churned out by the drilling action. When the drill is in ‘stowed’ position the camera will be able to image the area in front of the rover (image credit: ESA, M. Cowan)

ExoMars2022_Auto28

Figure 41: Photo of the Rosalind Franklin ExoMars rover after completing environmental and vacuum testing in Toulouse, France. The rover was tested in a clean room to withstand conditions similar to those on Mars. The vehicle left the Thales Alenia Space facilities in Toulouse on 11 February 2020 en route to Cannes, where it will be integrated with the carrier and descent modules, and it will undergo months of intense testing to confirm it is compatible with the mission operations and the martian environment (image credit: Airbus)

Parachutes ready for drop tests

- New deployment bags for the parachutes of the ExoMars mission are cleared to go for final high-altitude drop tests. However, travel restrictions in response to the coronavirus pandemic have forced to postpone these tests from May to September 2020 at the earliest.

- The dynamic extraction test campaign was a success. The updated design with eased lines and canopy exit proved to avoid tears at extraction velocities of 200 km/h, similar to the high speeds at which the parachutes will be pulled from their bags during the descent towards the surface of Mars.

Figure 42: Slow motion footage of ExoMars parachute extraction tests. A compressed air cannon shot the bag horizontally, releasing the parachute as it will happen during the mission. The lid of the parachute assembly is pulled along a suspended cable at high speed while the end of the assembly is fixed to a wall. The extraction takes a split second. A total of six ground-based tests saw the clean extraction of the parachutes from their bags, with no frictional damage, during a test campaign between November 2019 and January 2020 at NASA’s Jet Propulsion Laboratory in California, US. - New deployment bags for the parachutes with eased lines and canopy exit proved to avoid tears at extraction velocities of 200 km/h, similar to the high speeds at which the parachutes will be pulled from their bags during the descent towards the surface of Mars. The two parachutes – each with its own pilot chute for extraction – are key to slow the ExoMars descent module before landing on the Red Planet. In just six minutes, the module goes from around 21,000 km/h during atmospheric entry to a soft landing at the surface (video credit: NASA/JPL-Caltech)

- “The meticulous folding of each parachute inside its bag is essential to guarantee a correct deployment,” explains Thierry Blancquaert, ExoMars spacecraft systems engineering team leader.

- Just the folding of the second main parachute, which with 35 m of diameter will be the largest to ever fly on Mars, takes over three days.

- A total of six ground-based tests saw the clean extraction of the parachutes from their bags, with no frictional damage, during a test campaign between November 2019 and January 2020 at NASA’s Jet Propulsion Laboratory in California, US.

- These tests followed the high-altitude drop tests in 2019, during which critical damage to both parachute canopies was observed.

- The two parachutes – each with its own pilot chute for extraction – are key to slow the ExoMars descent module before landing on the Red Planet. In just six minutes, the module goes from around 21,000 km/h during atmospheric entry to a soft landing at the surface.

Flawless release

- The high-speed tests mimicked the extraction velocity the parachutes will experience during the descent phase, just a couple of minutes before touchdown. A compressed air cannon shot the bag horizontally, releasing the parachute as it will happen during the mission.

- “The extraction takes a split second, it all happens very quickly,” says Thierry.

- ESA benefitted from NASA’s hands-on parachute experience. The cooperation gave Europe access to special test equipment at the Jet Propulsion Laboratory, and the opportunity to run several dynamic extraction tests on a quick turnaround.

- “It was a real challenge to organize this campaign so quickly with all the industry partners involved. The support provided by NASA was excellent and instrumental to the successful validation of our new parachute deployment bags,” adds Thierry.

Flying higher

- The next step, high-altitude drop tests at a test range in Oregon, US, will have to wait until the end of September 2020. This type of tests requires complex logistics and strict weather conditions for flight safety.

- The test parachute embedded into its canister and mounted onto a drop test vehicle will be lifted to an altitude of nearly 30 km with a stratospheric helium balloon. This drop test vehicle will be released by telecommand and freefall until the test parachute sequence starts in pressure conditions similar to diving into the thin martian atmosphere.

- These tests should demonstrate the capability of the main parachutes to deploy smoothly from their bags and to sustain the inflation loads without tearing.

• April 2, 2020: Carefully wrapped inside this donut-shaped bag is a 35-m diameter parachute that will endure a frenzied six-minute dive into martian atmosphere. 25)

- The 64 kg parachute, made mostly of nylon and Kevlar fabrics, has been thoroughly sterilized to reduce its level of contamination for planetary protection. One of the main goals of ExoMars is to search for signs of life on the Red Planet, so any microbes hitchhiking on its ride from Earth would interfere with the investigation and could trigger a false positive – what scientists call ‘forward contamination’.

- The potential existence of past and perhaps even present life on Mars requires rigorous sterilization. Scientists want to be sure that the instruments on the ExoMars rover Rosalind Franklin, only detect signs of indigenous life, but protecting the martian environment from ourselves is equally as important. A planetary protection policy by the Committee on Space Research (COSPAR) details all requirements, in compliance with the United Nations Outer Space Treaty.

- The parachute was heated in an oven at 125°C for several days to kill any microbes. The oven is part of ESA’s Life, Physical Sciences and Life Support Laboratory, a state-of-the-art facility in the Netherlands. The Laboratory has also cleaned ExoMars instruments and subsystems, but this second stage parachute is the largest item to be sterilized.

- The dry heat sterilizer is in the ‘ISO Class 1’ cleanroom, one of the cleanest places in Europe. All air passes through a two-stage filter ensuring less than 10 dust particles no larger than 10 millionth of a meter, or less than the size of the coronavirus.

- People working on the ExoMars hardware are the main biohazard. Every day, each of us sheds millions of skin particles. Everyone entering the chamber has to gown up more rigorously than a surgeon before passing through an air shower to remove any remaining contaminants. Watch how to dress to avoid being a ‘bioburden’ in the latest ExoMars vlog.

- The parachute will next prove itself in high-altitude drop tests. The whole parachute assembly system, mounted onto a drop test vehicle, will be lifted to an altitude of nearly 30 km by helium balloon. The vehicle will free-fall until the test parachute sequence starts in pressure conditions similar to diving into the martian atmosphere.

- The dates of these tests have been postponed due to the coronavirus outbreak, and a new window of opportunity for testing is pending confirmation.

ExoMars2022_Auto27

Figure 43: This qualification model is a copy of the largest-ever parachute to open on the Red Planet when it flies on the ExoMars 2022 mission – and it is at least 10,000 times cleaner than your smartphone (image credit: ESA, P. Horváth)

• March 12, 2020: The joint ESA-Roscosmos project team evaluated all the activities needed for an authorization to launch, in order to analyze the risks and schedule. With due consideration of the recommendations provided by European and Russian Inspectors General, ExoMars experts have concluded that tests necessary to make all components of the spacecraft fit for the Mars adventure need more time to complete. 26)

- The primary goal of the mission is to determine if there has ever been life on Mars, and to better understand the history of water on the planet. The ExoMars rover, named Rosalind Franklin, includes a drill to access the sub-surface of Mars as well as a miniature life-search laboratory kept within an ultra-clean zone.

- In the frame of a dedicated meeting, ESA and Roscosmos heads Jan Wörner and Dmitry Rogozin agreed that further tests to the spacecraft with the final hardware and software are needed. In addition, the parties had to recognize that the final phase of ExoMars activities are compromised by the general aggravation of the epidemiological situation in European countries.

- "We have made a difficult but well-weighed decision to postpone the launch to 2022. It is driven primarily by the need to maximize the robustness of all ExoMars systems as well as force majeure circumstances related to exacerbation of the epidemiological situation in Europe which left our experts practically no possibility to proceed with travels to partner industries. I am confident that the steps that we and our European colleagues are taking to ensure mission success will be justified and will unquestionably bring solely positive results for the mission implementation," said Roscosmos Director General Dmitry Rogozin.

- "We want to make ourselves 100% sure of a successful mission. We cannot allow ourselves any margin of error. More verification activities will ensure a safe trip and the best scientific results on Mars,” said ESA Director General Jan Wörner.

- "I want to thank the teams in industry that have been working around the clock for nearly a year to complete assembly and environmental testing of the whole spacecraft. We are very much satisfied of the work that has gone into making a unique project a reality and we have a solid body of knowledge to complete the remaining work as quickly as possible."

- To date, all flight hardware needed for the launch of ExoMars has been integrated in the spacecraft. The Kazachok landing platform is fully equipped with thirteen scientific instruments, and the Rosalind Franklin rover with its nine instruments recently passed final thermal and vacuum tests in France.

- The latest ExoMars parachutes dynamic extraction tests have been completed successfully at NASA’s Jet Propulsion Laboratory, and the main parachutes are ready for the two final high-altitude drop tests in March in Oregon, US.

- The descent module has been undergoing propulsion system qualification in the past month. The ExoMars descent module and landing platform have been undergoing environmental testing in Cannes, France, to confirm the spacecraft is ready to endure the harsh conditions of space on its journey to Mars.

- The new schedule foresees a launch between August and October 2022. Celestial mechanics define that only relatively short launch windows (10 days each) every two years exist in which Mars can be reached from Earth.

- ExoMars will be the first mission to search for signs of life at depths up to two meters below the martian surface, where biological signatures of life may be uniquely well preserved.

• February 14, 2020: The Rosalind Franklin ExoMars rover after completing environmental and vacuum testing in Toulouse, France. The rover was tested in a clean room to withstand conditions similar to those on Mars. 27)

- The ExoMars rover will be Europe’s first planetary rover. It will search for signs of past or present life on Mars and is equipped with a 2m drill to take samples from below the surface where they will have been protected from the harsh radiation environment.

ExoMars2022_Auto26

Figure 44: The vehicle left the Thales Alenia Space facilities in Toulouse on 11 February 2020 en route to Cannes, where it will be integrated with the carrier and descent modules, and it will undergo months of intense testing to confirm it is compatible with the mission operations and the martian environment (image credit: Airbus Space)

• February 13, 2020: The ExoMars landing platform, carrier and descent modules together during environmental testing in the anechoic chamber at Thales Alenia Space (TAS) in Cannes, France. 28)

- The composite spacecraft is undergoing environmental testing to confirm it is ready to endure the harsh conditions of space on its eight-month journey to Mars.

- The three integrated modules were placed in a special chamber with the inside walls covered with pyramid-shaped non-reflective foam to absorb signals such as TV and radio, radar and even mobile phone calls, and prevent unwanted reflections.

ExoMars2022_Auto25

Figure 45: The carrier module, provided by OHB System, is the communication link between Earth and the spacecraft, and will support navigation with star trackers and Sun sensors. The descent module and landing platform, provided by Lavotchkin, are mated in this picture (image credit: TAS)

- The tests will verify that the modules work well together without any glitches or interference.

- The ExoMars mission will investigate how Mars has evolved and whether there may be conditions for life.

• January 16, 2020: The Rosalind Franklin rover of the joint ESA-Roscosmos ExoMars mission completed a series of environmental tests at the end of 2019 at Airbus, Toulouse, France. This included final thermal and vacuum tests where the Rover is heated and cooled to simulate the temperatures of its journey through space and on the surface of Mars. For example, Rosalind Franklin can expect temperatures dropping to –120°C outside, and –50 °C inside the rover once on Mars. It must also be able to operate in less than one hundredth of Earth’s atmospheric pressure – and in a carbon dioxide-rich atmosphere. 29)

- Last year the ‘structural and thermal model’ of the rover successfully completed a rigorous environmental test campaign; the latest round of tests subjected the real flight-model to the simulated space environment.

- Now the focus moves to final checks on the rover systems. This includes checking the alignment of instruments working together, such as the imaging systems, and a final functional test of the integrated system after the environmental campaign. Once these verifications on the rover are completed, a functional check of the interfaces with the surface platform and descent module that will deliver it safely to the surface of Mars will be performed at Thales Alenia Space, Cannes, France.

- The primary goal of the mission is to determine if there is or there has ever been life on Mars, and to better understand the history of water on the planet. The rover will seek out interesting geological locations to examine with its scientific tools and to drill to retrieve underground samples, on a quest to tackle these questions.

- The mission is foreseen for launch in the launch window 26 July–11 August 2020 on a Russian Proton-M rocket with a Breeze-M upper stage from Baikonur, Kazakhstan, arriving at Mars 19 March 2021.

ExoMars2022_Auto24

Figure 46: ExoMars Rover completes environmental tests (image credit: Airbus)

• December 19, 2019: A series of ground-based tests designed to check the extraction of the ExoMars 2020 mission’s parachutes from their bags have started successfully with promising results to keep the mission on track for next year’s launch. 30)

- Landing on Mars is a high-risk endeavour with no room for error. In just six minutes, a descent module with its precious cargo cocooned inside has to slow from around 21,000 km/h at the top of the planet’s atmosphere, to a soft landing at the surface controlled by the lander’s propulsion system.

- A key element of reaching the surface safely is based around a parachute system.

ExoMars2022_Auto23

Figure 47: The ExoMars parachute deployment sequence that will deliver a surface platform and rover to the surface of Mars in 2021 (following launch in 2020). The graphic is not to scale, and the colors of the parachutes are for illustrative purposes only (image credit: ESA)

- For ExoMars 2020, which comprises the Rosalind Franklin rover to explore the planet for signs of life, and the Kazachok surface platform to monitor the local environment at the landing site, a two-parachute system is used, each with its own pilot chute for extraction. The first main parachute has a diameter of 15 m and will be deployed while the descent module is still travelling at supersonic speeds, while the second main parachute has a 35 m diameter, the largest to ever fly on Mars.

- Earlier this year, during two high-altitude drop tests, damage to both parachute canopies was observed. Intensive investigations revealed that the main issues concerned the parachute bags, and not the parachutes themselves. Thanks to support from NASA to benefit from their hands-on parachute experience, ESA has made modifications to the way the parachutes are released from the bags, to ease the extraction and avoid frictional damage.

Figure 48: ExoMars parachute extraction tests. A series of clips from different angles and at different speeds showing parachute extraction tests using a NASA/JPL test rig powered by compressed air. The lid of the parachute assembly is pulled along a suspended cable at high speed while the end of the assembly is fixed to a wall. When the release mechanism is activated, the parachute bag is pulled away from the parachute at the target speed, mimicking the extraction as it will be on Mars. At the highest speeds, the tests enable the extraction to take place at more than 200 km/h (video credit: NASA/JPL-Caltech)

- The cooperation with NASA has also provided access to special test equipment at NASA’s Jet Propulsion Laboratory that is enabling ESA to conduct multiple dynamic extraction tests on the ground to validate the new design adaptations prior to the upcoming high-altitude drop tests. The ground tests mimic the high speeds at which the parachutes will be pulled from their bags during the descent phase at Mars.

- Calibration tests, including low-speed extraction tests at around 120 km/h on both main parachutes and the first high-speed extraction test at a targeted speed of just over 200 km/h on the first main parachute, have already been completed. The low-speed tests were crucial to verify the stability of the new parachute bag design, while the high-speed tests mimic that at which the parachutes will be pulled from their bags during the descent phase at Mars.

- Real-time observations of these initial tests showed a clean and correct release of the parachutes from their bags, with no damages seen in either the parachute system or the bag.

- “Landing on Mars is difficult and we cannot afford to have any loose ends,” says Thierry Blancquaert, ExoMars Spacecraft Systems Engineering Team Leader. “After many hurdles, the parachute system modifications are moving forward, and these preliminary tests show very promising results that pave the way for the next qualification tests.”

- To save time and resources, and to quickly test the proof of concept of the new parachute bags, the initial tests were carried out using the repaired parachutes from the high-altitude drop tests. Given the positive results of the first tests, and following the completion of the high-speed tests, the extractions will be repeated using the existing parachute ‘spares’, which have not been previously damaged or undergone repairs.

- Importantly, unlike the high-altitude drop tests which require complex logistics and strict weather conditions, making them difficult to schedule, the ground tests can be repeated on a quick turnaround, buying significantly more time in the test campaign and reducing risk by allowing more tests to be conducted on a short time frame.

- Further high-speed tests are planned in the coming weeks to confirm the results of the preliminary tests. Then the parachute systems will be tested again in two high-altitude drop tests in Oregon, US, in February and March 2020. The tests have to be completed prior to the ExoMars project’s ‘qualification and acceptance review’ planned for the end of April in order to meet the 2020 launch window (26 July–11 August).

- In the meantime, the rover is nearing completion of its environmental test campaign at Airbus, Toulouse, France. At the same time, the flight model spacecraft that will transport the mission from Earth to Mars, and which contains the carrier module coupled with the Russian descent module, is at Thales Alenia Space, Cannes, France, where it underwent thermal environment tests. The scientific instruments of the surface platform are now being integrated by the Russian Academy of Sciences (IKI). The rover is expected in Cannes in late January, with the integration into the lander foreseen end February.

- The mission will launch on a Proton-M rocket with a Breeze-M upper stage from Baikonur, Kazakhstan. Once landed safely in the Oxia Planum region of Mars on 19 March 2021, the rover will drive off the surface platform, seeking out geologically interesting sites to drill below the surface, to determine if life ever existed on our neighbor planet.

- All parachute system qualification activities are managed and conducted by a joint team involving the ESA project (supported by Directorate of Technology, Engineering and Quality expertise), TAS-I (prime contractor, in Turin), TAS-F (PAS lead, in Cannes), Vorticity (parachute design and test analysis, in Oxford) and Arescosmo (parachute and bags manufacturing, in Aprilia). NASA/JPL-Caltech has provided engineering consultancy, access to the dynamic extraction test facility, and on-site support. The extraction tests are supported through an engineering support contract with Airborne Systems, who also provide NASA’s Mars 2020 parachutes, and by Free Flight Enterprises for the provision of parachute folding and packing facilities.

- The ExoMars program is a joint endeavour between ESA and Roscosmos. In addition to the 2020 mission, it also includes the Trace Gas Orbiter (TGO) launched in 2016. The TGO is already both delivering important scientific results of its own and relaying data from NASA’s Curiosity Mars rover and InSight lander. It will also relay the data from the ExoMars 2020 mission once it arrives at Mars in March 2021.

ExoMars2022_Auto22

Figure 49: Close-up of the parachute bag – containing one of two test parachutes of the ExoMars 2020 mission – using a NASA/JPL test rig powered by compressed air. The image shows the new configuration of the parachute bag, which releases the parachute from the center outward, with the bag opening in a petal-like fashion. The tests are carried out to verify the extraction of the parachutes from the modified bag (image credit: NASA/JPL-Caltech)

• December 13, 2019: The work of Dr Rosalind Franklin (1920-1958) is well known for being central to the discovery of the iconic double-helix structure of DNA, the fabric of life as we know it on Earth. More than half a century later, she also inspired the name of ESA’s ExoMars rover, scheduled to launch in 2020 and start its exploration of the Red Planet in 2021. But the lasting imprint Rosalind left on her family also inspired her younger brother to name his own daughter Rosalind. 31)

ExoMars2022_Auto21

Figure 50: Rosalind meets Rosalind. After learning that the rover had been named in honor of her aunt – the result of a public competition led by the UK Space Agency – and also sharing the same name, Rosalind Franklin reached out to ESA, curious to learn more about the mission. Last month, she visited ESA’s technical center in the Netherlands and is pictured here meeting the 1:1 scale model of the Rosalind Franklin ExoMars rover for the first time (image credit: ESA, G. Porter)

- Rosalind said: “I was overwhelmed to see the rover and to meet the extraordinary scientists that have dedicated years to the development of the project, bringing it from concept to reality, and recognizing my Aunt Rosalind’s contribution to science by naming it after her. It was truly moving and filled me with pride and appreciation. It was an amazing day of learning and discovery and I know she would feel so honored and full of admiration towards everyone involved.”

- ExoMars mission experts were on hand to answer her questions and to explain more about how the rover will be driven across the martian surface, and the science experiments it will carry out. One of the unique aspects of the rover is its two meter long drill that will retrieve underground samples for analysis in its onboard laboratory, where it will be able to sniff out signatures of life past or present.

- Just as scientific discovery is in the soul of the ExoMars program, Dr Rosalind Franklin knew from a young age that she wanted to be a scientist. Devoted and determined, she followed her dream, graduating with a Natural Sciences degree from Cambridge University, UK, in 1941, and earning a PhD in physical chemistry in 1945. She became an expert in X-ray diffraction imaging, applied to studying the physical chemistry of coals, and later revealing the hidden secrets of DNA, RNA and viruses.

- Her legacy lives on today in a number of ways: numerous scientific institutes carry her name – one example being in the Rosalind Franklin University of Medicine and Science in Chicago, U.S, that her niece is a trustee of. Next year her legacy will extend into space, and her adventurous spirit will be lived through the intrepid exploration of the Rosalind Franklin ExoMars rover as it discovers hidden secrets of the Red Planet.

- The ExoMars program is a joint endeavor between ESA and Roscosmos and comprises two missions: the first – the TGO (Trace Gas Orbiter) – launched in 2016 while the second, comprising the Rosalind Franklin rover and Kazachok surface platform, is planned for 2020. Together they will address the question of whether life has ever existed on Mars. The TGO is already delivering important scientific results and will also relay the data from the ExoMars 2020 mission once it arrives at Mars in March 2021.

• October 15, 2019: Positive steps towards solving the problems discovered with the ExoMars mission parachutes have been taken in the last month to keep on track for the July-August 2020 launch window. 32)

- The mission needs two parachutes – each with its own pilot chute for extraction – to help slow the descent module prior to landing on Mars. Once the atmospheric drag has slowed the descent module from around 21,000 km/h to 1,700 km/h, the first parachute will be deployed. Some 20 seconds later, at about 400 km/h, the second parachute will open. Following separation of the parachutes about 1 km above ground the braking engines will kick in to safely deliver a landing platform – with a rover encapsulated inside – onto the surface of Mars for its scientific mission. The entire sequence from atmospheric entry to landing takes just six minutes.

Figure 51: ExoMars progress update (video credit: ESA)

- While the deployment sequence of all four parachutes was successfully tested in high altitude drop tests earlier this year, damage to the 15 m-diameter primary parachute and 35 m-diameter secondary parachute canopy was observed. Despite precautionary design adaptations being introduced for a second test of the 35 m parachute, canopy damage occurred again.

- A thorough inspection of all the recovered hardware has since been completed, allowing the team to define dedicated design adaptations to both primary and secondary main parachutes. Some promising design changes will also be applied to the parachute bags to ease the lines and canopy exit from the bags, avoiding frictional damage.

- ESA has also requested support from NASA to benefit from their hands-on parachute experience. This cooperation gives access to special test equipment at NASA’s Jet Propulsion Laboratory that will enable ESA to conduct multiple dynamic extraction tests on the ground in order to validate any foreseen design adaptations prior to the upcoming high altitude drop tests.

- The next opportunities for high altitude drop tests are at a range in Oregon, US, January–March 2020. ESA is working to complete the tests of both the 15 m and 35 m parachute prior to the ExoMars project’s ‘qualification acceptance review’, which is planned for the end of April in order to meet the mission launch window (26 July–11 Aug 2020).

- The qualified parachute assembly, inside its flight canister, should ideally be integrated into the spacecraft prior to shipment to Baikonur in April, but it is also possible to do so during the spacecraft preparation activities at the launch site in May.

- The rover is currently undergoing its environmental test campaign at Airbus Toulouse, France. At the same time, the flight carrier module containing the descent module and lander platform is completing its final round of testing at Thales Alenia Space, Cannes, France. The rover will be integrated into the spacecraft in early 2020.

- All parachute system qualification activities are managed and conducted by a joint team involving the ESA project (supported by Technical Directorate expertise), TASinI (prime contractor), TASinF (PAS lead), Vorticity (parachute design and test analysis) and Arescosmo (parachute and bags manufacturing).

• September 16, 2019: Scientists at TU Dortmund University are generating high-accuracy 3D models of the terrain in Oxia Planum on Mars, ahead of the arrival of the ESA/Roscosmos ExoMars rover, Rosalind Franklin, in 2021. The DTMs (Digital Terrain Models) have a resolution of about 25 cm per pixel and will help scientists to understand the geography and geological characteristics of the region and to plan the path of the rover around the site. 33)

Figure 52: The region shown in this animation covers a large portion of the 120 x 19 km landing ellipse, with the eroded crater in the flyover towards the edge of the ellipse. Closer to the center, the terrain is relatively flat, which is more favorable for landing and operations (video credit: TU Dortmund University)

- The DTMs are based on high-resolution imagery from the HiRISE instrument on NASA’s Mars Reconnaissance Orbiter. HiRISE imagery has been widely applied to the classic stereo method of combining two images taken from slightly different angles to create a 3D picture of the landscape. However, conventional stereo techniques have limitations when applied to relatively homogeneous regions like the rover’s landing site. The team used an innovative technique called ‘Shape from Shading’ in which the intensity of reflected light in the image is translated into information on surface slopes. This slope data is integrated into the stereo imagery, giving an improved estimate of the 3D surface, achieving the best resolution possible in the reconstructed landscape, showing small-scale features like dune ripples and other rough surfaces.

- Oxia Planum lies at the boundary where many channels emptied into the vast lowland plains. Observations from orbit show that the region exhibits layers of clay-rich minerals that were formed in wet conditions some four billion years ago, likely in a large body of standing water. The rover contains a suite of instruments, including a drill, to examine the site for signs of biosignatures.

- The models were presented at the EPSC-DPS (European Planetary Congress-AAS Division for Planetary Sciences) Joint Meeting 2019 in Geneva on Monday 16 September 2019.

• September 6, 2019: The ExoMars carrier module and descent module containing the lander platform Kazachok have been integrated in Turin, Italy. A structural-thermal model of the rover is contained inside. 34)

ExoMars2022_Auto20

Figure 53: In this photo, members of the team stand in front of the integrated units. From bottom to top is the carrier module (silver/grey), the rear jacket of the descent module (white, middle) that protects the landing platform, and the landing platform itself (top). A front shield will also be placed on top (image credit: Thales Alenia Space)

- The composite craft will now move on to Cannes, France for environmental testing, while the Rosalind Franklin rover undergoes environmental testing in Toulouse, France.

• August 27, 2019: The Rosalind Franklin ExoMars rover has completed its construction activities in the UK and will now depart to France for testing under the conditions of the Red Planet’s environment. 35)

- The final pieces of the rover’s scientific suite of instruments were attached at the Airbus Defence and Space site in Stevenage over the last weeks. The finishing touches included the ‘eyes’ of the rover: the high-resolution cameras that will provide panoramic and close-up images of the terrain that the rover will explore once on Mars in 2021.

- The primary goal of the mission is to determine if there has ever been life on Mars, and to better understand the history of water on the planet. The rover will seek out interesting geological locations to examine with its scientific tools and to drill to retrieve underground samples, on a quest to tackle these questions.

- As such, the rover was assembled in a sterile cleanroom under stringent cleanliness rules to avoid that organics, including traces of human life, are accidentally carried to Mars and contaminate the samples.

- After 18 months of activities at Stevenage, the rover has now been sealed up and waved off from the UK. Its next stop is Airbus Toulouse, France where it will undergo four months of intense testing to confirm it is compatible with the mission operations and the martian environment.

- “Completing the build of the Rosalind Franklin rover under the strict cleanliness requirements, with all the science instruments onboard, is a major milestone of our ExoMars program. It is thanks to the dedication of all the teams involved that we are able to celebrate this moment today,” says David Parker, ESA’s Director of Human and Robotic Exploration.

- “We’re looking forward to completing the final rounds of tests before the rover is declared flight ready and closed inside the landing platform and descent module that will deliver it safely to the surface of Mars.”

• August 20, 2019: The full suite of scientific instruments, including cameras that will give us our eyes on Mars, the drill that will retrieve pristine soil samples from below the surface, and the onboard laboratory that will seek out signs of life are all installed on the ExoMars rover. 36)

- The rover, named after the pioneering scientist Rosalind Franklin, is part of the ESA-Roscosmos ExoMars program, and is nearing completion at Airbus Defence and Space, Stevenage, UK. The rover is now seen with its recently added PanCam, which sits on top of a mast that rises 2 m above the ground. PanCam will be fundamental in the day-to-day scientific operations of the rover to assist with scientific decisions on where to drive and drill.

- Determining whether life ever existed on the Red Planet, or still does today, is at the heart of the ExoMars program. While spacecraft exploring Mars in the last decades have shown that the surface is dry and barren, billions of years ago it was much more reminiscent of Earth, with water flowing in rivers and lakes, perhaps seas. If life ever began in this very early period, scientists think that the best chances to find evidence for it is to look underground, in ancient regions of Mars that were once influenced by water.

- The Rosalind Franklin rover will land in what scientists think might have been an ancient ocean, close to the boundary where channels from the southern highlands of Mars connect to the smooth northern lowlands. After the initially wet era in the planet’s early history, lavas from volcanic eruptions covered large areas of Mars, some resisting erosion until today. This means that the landing site’s underlying materials may only have been exposed recently, initially protecting them from space radiation and later making them accessible to the rover and its analytical tools.

- PanCam, with its stereo and high-resolution cameras will provide detailed views of geologically interesting features in visible and near-infrared wavelengths, and together with measurements made by the spectrometers, will tell us what the rocks are made of and if they were influenced by water in the past. In select locations the drill will retrieve samples from up to 2 m below the surface, delivering them to the onboard science laboratory for detailed analysis to sniff out signs of biological signatures.

- A camera on the bottom of the drill unit will provide close-up images of the soil that is churned out by the drilling action. When the drill is in ‘stowed’ position the camera will be able to image the area in front of the rover. The Clupi (Close-up imager) recently underwent final calibration tests at ESA’s technical facility in the Netherlands, before being shipped to Stevenage to be attached to the drill unit (see Figure 62).

- In addition to the cameras, spectrometers, drill and analytical lab, the rover also has sub-surface sounding radar and neutron detector.

- “Our rover has really taken shape,” says Jorge Vago, ESA’s ExoMars rover project scientist. “We have an incredibly powerful scientific payload to explore the surface and subsurface of Mars on our quest to find biosignatures.”

- With the scientific suite of instruments onboard, the rover is sealed up in a dedicated cleanroom. Once final checks have been completed, the rover will be transported from the UK to Toulouse, France. There it will undergo environmental testing to confirm it is ready for the conditions on Mars. Once complete it will move on to Cannes, France for final integration with the lander platform, named Kazachok, and with the descent module and carrier module that will transport the mission from Earth to Mars.

- The mission is foreseen for launch in just under a year from now (the launch window is 26 July–13 August 2020) on a Russian Proton-M launcher, arriving at Mars in March 2021.

ExoMars2022_Auto1F

Figure 54: The Rosalind Franklin ExoMars rover recently had its Panoramic Camera system (PanCam) fitted. The camera suite sits on top of a mast 2 m above ground level, and will be fundamental in the day-to-day scientific operations of the rover to assist with scientific decisions on where to drive and drill. (image credit: Airbus, M. Alexander)

• August 16, 2019: The ExoMars mission will see Rosalind Franklin the rover and its surface platform Kazachok land on the Red Planet in 2021. From fine-grained soil to large boulders and slopes, the rover has to be able to move across many types of terrain, collect samples with a 2 m-long drill and analyze them with instruments in its onboard laboratory. 37)

- This second episode about ExoMars features the challenges of leaving the surface platform, overcoming obstacles and walking on dunes.

- ESA, Roscosmos, Thales, Airbus and RUAG engineers put a full-sized model through a series of tests to fine-tune how the rover will move from its landing platform onto the martian terrain.

- Rovers on Mars have previously been caught in sand, and turning the wheels dug them deeper – just like a car stuck in mud or snow. To avoid this, Rosalind the rover has a unique locomotion mode called ‘wheel walking’.

Figure 55: ExoMars – Moving on Mars (video credit: ESA, Uploaded on 16 August 2019)

• August 12, 2019: As the second ExoMars mission, comprising a rover and surface science platform, progresses towards launch next year, teams continue to troubleshoot the parachute design following an unsuccessful high-altitude drop test last week. 38)

- The European-built Rosalind Franklin rover and the Russian-led surface platform, Kazachok, are nearing completion. They will be encapsulated in a descent module, and transported to Mars by a carrier module, following launch on a Proton rocket from Baikonur.

- The descent module needs two parachutes – each with its own pilot chute for extraction – to help slow the craft prior to landing. Following separation of the parachutes, the speed must be suitable for the braking engines to safely deliver the landing platform and the rover onto the surface of Mars. The entire sequence from atmospheric entry to landing takes just six minutes.

- As part of the planned testing prior to launch, several parachute tests were scheduled at the Swedish Space Corporation Esrange site. The first took place last year and demonstrated the successful deployment and inflation of the largest main parachute in a low-altitude drop test from 1.2 km, deployed by a helicopter. The parachute has a diameter of 35 m, which is the largest parachute ever to fly on a Mars mission.

- On 28 May this year, the deployment sequence of all four parachutes was tested for the first time from a height of 29 km – released from a stratospheric helium balloon. While the deployment mechanisms activated correctly, and the overall sequence was completed, both main parachute canopies suffered damage.

- Following hardware inspection, adaptations were implemented to the design of the parachutes and bags ready for the next high-altitude test, which was conducted on 5 August, this time just focusing on the larger, 35 m diameter, parachute.

- Preliminary assessment shows that the initial steps were completed correctly, however damages to the canopy were observed prior to inflation, similar to the previous test. As a result, the test module descended under the drag of the pilot chute alone.

- “It is disappointing that the precautionary design adaptations introduced following the anomalies of the last test have not helped us to pass the second test successfully, but as always we remain focused and are working to understand and correct the flaw in order to launch next year,” says Francois Spoto, ESA’s ExoMars Team Leader.

- All hardware, videos and recorded telemetries have now been recovered and are currently under evaluation. The analysis should reveal the root cause of the anomaly and will be able to guide the way forward in terms of further modifications that might be required to the parachute system before subsequent test opportunities.

- A further high-altitude test is already foreseen for the first main parachute before the end of this year. The next qualification attempt of the second main parachute is then anticipated for early 2020.

- In parallel, the teams are investigating the possibility to manufacture additional parachute test models and conducting ground-based simulations to mimic the dynamic nature of parachute extraction, since there are not many opportunities for full-scale high-altitude drop tests.

- Furthermore, in addition to the regular forum of exchanges between ESA and NASA experts, a workshop of Mars parachute specialists will convene next month to share knowledge.

- “Getting to Mars and in particular landing on Mars is very difficult,” adds Francois. “We are committed to flying a system that will safely deliver our payload to the surface of the Mars in order to conduct its unique science mission.”

ExoMars2022_Auto1E

Figure 56: Sizes of key components of the ExoMars 2020 mission. The parachutes that will help slow the descent module through the martian atmosphere are compared in size to the iconic landmark of Elizabeth Tower ('Big Ben'), in London, UK. The descent module, which will deliver the surface platform and rover to the martian surface, is compared with the height of a human. The rover is stowed inside the surface platform, and will drive off one of the two ramps that will be deployed after landing (image credit: ESA)

- The mission is scheduled for launch in the window 25 July–13 August 2020, arriving at Mars in March 2021. After driving off the surface platform, Rosalind Franklin rover will explore the surface of Mars, seeking out geologically interesting sites to drill below the surface, to determine if life ever existed on our neighbor planet.

- The rover is currently nearing completion at Airbus Defence and Space, Stevenage, UK, and will soon begin its environmental test campaign at Airbus Toulouse, France. At the same time, the flight carrier module comprising the descent module and lander platform will begin its final round of testing at Thales Alenia Space, Cannes, France. The rover will be integrated into the spacecraft in early 2020.

- The ExoMars program is a joint endeavour between ESA and Roscosmos. In addition to the 2020 mission, it also includes the Trace Gas Orbiter (TGO) launched in 2016. The TGO is already both delivering important scientific results of its own and relaying data from NASA’s Curiosity Mars rover and Insight lander. It will also relay the data from the 2020 mission once it arrives at Mars in March 2021.