Minimize Chime (Copernicus)

CHIME (Copernicus Hyperspectral Imaging Mission for the Environment)

Status     References

Evolution in the Copernicus Space Component (CSC) is foreseen in the mid-2020s to meet priority user needs not addressed by the existing infrastructure, and/or to reinforce services by monitoring capability in the thematic domains of CO2, polar, and agriculture/forestry. This evolution will be synergetic with the enhanced continuity of services for the next generation of CSC. 1)

Growing expectations about the use of Earth observation data to support policy making and monitoring puts increasing pressure on technology to deliver proven and reliable information. Hyperspectral imaging (also known as imaging spectroscopy) today enables the observation and monitoring of surface measurements (geobiophysical and geobiochemical variables) due to the diagnostic capability of spectroscopy provided through contiguous, gapless spectral sampling from the visible to the shortwave infrared portion of the electromagnetic spectrum.

Hyperspectral imaging is a powerful remote sensing technology based on high spectral resolution measurements of light interacting with matter, thus allowing the characterization and quantification of Earth surface materials. Quantitative variables derived from the observed spectra, e.g. directly through distinct absorption features are diagnostic for a range of new and improved Copernicus services with a focus on the precise management of natural resources. These services support the monitoring, implementation and improvement of a range of related policies and decisions.

Thanks to well-established spectroscopic techniques, optical hyperspectral remote sensing has the potential to deliver significant enhancement in quantitative value-added products. This will support the generation of a wide variety of new products and services in the domain of agriculture, food security, raw materials, soils, biodiversity, environmental degradation and hazards, inland and coastal waters, and forestry. These are relevant to various EU policies, that are currently not being met or can be really improved, but also to the private downstream sector.

The main mission objective of CHIME is ”To provide routine hyperspectral observations through the Copernicus Program in support of EU- and related policies for the management of natural resources, assets and benefits. This unique visible-to-shortwave infrared spectroscopy (400-2500 nm, Δλ≤10 nm) based observational capability will in particular support new and enhanced services for food security, agriculture and raw materials. This includes sustainable agricultural and biodiversity management, soil properties characterization, sustainable mining practices and environment preservation.”

Natural Resources Management

Sustainable Agriculture and Food Security

Raw Materials

Food nutrition and nutrition quality

Sustainable use of
nutrients and water

Soil degradation and soil
properties

Responsible raw materials
exploration and mining

Mine Environment
Management

Table 1: Application pillars of the hyperspectral imaging mission for natural resources management and their unique information provision using hyperspectral sensors

The mission will provide hyperspectral observations with high radiometric accuracy at a spatial resolution of 20-30 m and with a revisit time of 10-12.5 days, using a sun synchronous orbit with overpass time of between 10:30-11:30 LTDN (Local Time on Descending Node). The core products supplied by the mission will be Level-2A atmospheric and geometrically correct surface reflectance, including Bottom-of-Atmosphere (BOA) reflectance, or tho-rectified geometry using a Digital Elevation Model (DEM) and pixel classification (a side product from the atmospheric correction process) allowing users to distinguish opaque clouds, thin clouds, cloud shadows, vegetation, etc. In addition, a set of downstream-products will be proposed to users as part of the mission catalogue to support the operational use of the data. 2)

Products and services from CHIME are expected to support research in the domains of agriculture, food security, raw materials, soils, biodiversity, environmental degradation and hazards, inland and coastal waters, and forestry. The mission will make unique and major contributions towards fulfilling user requirements in the domains of agricultural services and sustainable agricultural management, and raw materials. It will support a number of policies, in particular the UN SDGs [(Sustainable Development Goals], SDGs 2, 12 and 15], the EU Common Agricultural Policy (CAP), the EU Raw Materials Initiative, the UN Convention for Combating Desertification and Land Degradation, the Soil Thematic Strategy and the Soil Framework Directive, the EU Water Framework Directive and the UN Convention on Biodiversity (Aichi Targets).




Development status

• November 13, 2020: Today, ESA signed contracts with Thales Alenia Space in France and in Italy, and Airbus in Spain to build three of the new high-priority Copernicus satellite missions: CHIME, CIMR and LSTM, respectively. Each mission is set to help address different major environmental challenges such as sustainable agriculture management, food security, the monitoring of polar ice supporting the EU Integrated Policy for the Arctic, and all will be used to understand climate change. 3)

- With a contract worth €455 million, Thales Alenia Space France will lead the development of the CHIME (Copernicus Hyperspectral Imaging Mission for the Environment). The contract was signed in the presence of Bruno Le Maire, French Minister of the Economy and Finance. The mission will carry a unique visible to shortwave infrared spectrometer.

- It will provide routine hyperspectral observations to support new and enhanced services for sustainable agricultural and biodiversity management, as well to characterize soil properties, which is key to vegetation health. The mission will complement Copernicus Sentinel-2 for applications such as land-cover mapping.

Chime_Auto0

Figure 1: CHIME will carry a unique visible to shortwave infrared spectrometer to provide routine hyperspectral observations to support new and enhanced services for sustainable agricultural and biodiversity management, as well as soil property characterization. The mission will complement Copernicus Sentinel-2 for applications such as land-cover mapping (image credit: Thales Alenia Space)

• July 14, 2020: Teledyne e2v, a Teledyne Technologies company and part of the Teledyne Imaging Group has been selected through the grouped proposal of the European Space Agency’s (ESA) industrial policy committee to place six Copernicus Sentinel satellite missions to provide the image sensor technology. 4)

- The two missions, CHIME and CO2M, funded by ESA, incorporate image sensors at the heart of the instruments and will utilize Teledyne Imaging’s technology.

- The Copernicus Hyperspectral Imaging Mission, CHIME, a unique visible to shortwave infrared spectrometer will provide routine hyperspectral observations to support new and enhanced services for sustainable agricultural and biodiversity management, and soil property characterization. The mission will complement Copernicus Sentinel-2, which also features a Teledyne Imaging visible sensor, for applications such as land-cover mapping. Thales Alenia Space France will lead the CHIME industrial consortium.

- Dr Miles Adcock – President Space and Quantum at Teledyne e2v said: “This is excellent news in two respects for the CHIME mission. First, the UK facility has been able to continue the long-standing supply of imaging sensor technology to the Copernicus Sentinels. Second, we have developed a UK infrared detector design and manufacturing capability that utilizes the world’s best base detector substrate materials from within the Teledyne Imaging Group.”

July 03, 2020: Following the financial commitment from ESA Member States at last November’s Council at Ministerial Level Space19+, ESA’s industrial policy committee has approved contracts totalling €2.55 billion to forward the development of six new Copernicus satellite missions, each mission comprising two satellites, a development and a recurrent unit. 5)

- The overall package is co-funded by the EU and ESA Member States, and relies on future funding from the EU Multiannual financial framework.

- The approval provides the green light to start industrial contracts for the six missions. However, two important milestones need to be met before the missions can be fully developed: an agreement between ESA and the EU for the EU co-funded part of the program, and a positive decision by the EC as well as ESA/EU Member States to go from Phase B2 to Phase C/D.

- This decision point is planned in the second half of 2021.

- Copernicus is the biggest provider of Earth observation data in the world – and while the EU is at the helm of this environmental monitoring program, ESA develops, builds and launches the dedicated satellites. It also operates some of the missions and ensures the availability of data from third party missions.

- Copernicus is often quoted as a prime example how the European Commission and ESA can successfully work together in space, making perfect use of each other’s strengths.

- The current suite of Sentinel missions are at the heart of the program. Data from the Sentinels feed into the Copernicus Services, which help address challenges such as food security, air pollution, rising sea levels, diminishing polar ice, natural disasters and, importantly, climate change.

The missions planned (see Copernicus file on the eoPortal)

- Looking to the future, six high-priority candidate missions will expand the current capabilities of the Sentinels and address EU policy priorities and gaps in Copernicus user needs.

- The new industrial contracts now kick off the key design phases (Phase B) for these six missions.

- The Copernicus Anthropogenic Carbon Dioxide Monitoring, CO2M, mission will carry a near-infrared and shortwave-infrared spectrometer to measure atmospheric carbon dioxide produced by human activity. OHB-System Germany will lead the development with a contract value of €445 million.

- The Copernicus Hyperspectral Imaging Mission, CHIME, will carry a hyperspectral imager to return detailed information for sustainable agricultural and biodiversity management. Thales Alenia Space France will lead the development with a contract value of €455 million.

• July 2, 2020: TAS (Thales Alenia Space) a Joint Venture between Thales (67 %) and Leonardo (33 %), has recently been selected by the European Space Agency (ESA) in coordination and with the agreement of the European Commission, for major Copernicus missions. Copernicus is the core satellite Earth observation program of the European Commission and ESA. It provides Earth observation data for environmental protection, climate monitoring, natural disaster assessment and other social tasks.

- Thales Alenia Space will serve as prime contractor for the following missions:

a) TAS France for CHIME (Hyperspectral Imaging Mission for the Environment) with OHB system and Leonardo as main subcontractors

b) TAS Italia for CIMR (Passive Microwave Imaging Mission) with OHB system and OHB Italia as subcontractors

c) TAS Italia for ROSE L (L-band SAR Mission) with Airbus Defence & Space Germany as subcontractor.

- Thales Alenia Space will also be responsible for the payload on two further missions:

d) TAS France for CO2M instrument (the CO2 Monitoring Mission) to measure global anthropogenic CO2 emissions and thus play a key role in studying the causes of climate change and monitoring it, with OHB system as prime contractor

e) TAS France for the CRISTAL (Polar Ice and Snow Topographic Mission) altimeter with Airbus Defence & Space Germany as prime contractor.

- Hervé Derrey, CEO of Thales Alenia Space declared: “I really want to warmly thank ESA for the trust they put in our company to be on-board of five of the six new Copernicus missions, driving three of them as prime contractor. These successes are reflecting the capacity of Thales Alenia Space to address complex Earth Observation missions in various configurations including optical and radar relevant solutions. I also would like to warmly thank the European Commission, the member states, and all national space agencies in particular CNES and ASI for their strong support”.



1) ”Copernicus Hyperspectral Imaging Mission for the Environment - Mission Requirements Document,” ESA/ESTEC, 23 July 2019, URL: http://esamultimedia.esa.int/docs/EarthObservation/Copernicus_CHIME_MRD_v2.1_Issued20190723.pdf

2) ”Plans for a New Wave of European Sentinel Satellites,” ESA, 2020, URL: https://futureearth.org
/wp-content/uploads/2020/01/issuebrief_04_03.pdf

3) ”Contracts signed for three high-priority environmental missions,” ESA Applications, 13 November 20220, URL: https://www.esa.int/Applications/Observing_the_Earth/Copernicus
/Contracts_signed_for_three_high-priority_environmental_missions

4) ”Teledyne Imaging to supply image sensors for new Copernicus Earth observation missions,” Teledyne e2v, 14 July 2020, URL: https://www.teledyne-e2v.com/news/
teledyne-imaging-to-supply-image-sensors-for-new-copernicus-earth-observation-missions/

5) ”Contracts awarded for development of six new Copernicus missions,” ESA Applications, 03 July 2020, URL: https://www.esa.int/Applications/Observing_the_Earth/Copernicus
/Contracts_awarded_for_development_of_six_new_Copernicus_missions



The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: ”Observation of the Earth and Its Environment: Survey of Missions and Sensors” (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (herb.kramer@gmx.net).

Status     References    Back to top