Minimize Copernicus

Copernicus (European Commission's Earth Observation Program) / formerly GMES

Space Component    Sentinels    Services     New Era    References

GMES (Global Monitoring for Environment and Security) is a European initiative put forward by the EC (European Commission) in October 1998 (Baveno Manifesto, Baveno/Lago Maggiore, Italy) with the objective to determine Europe's global monitoring role in the field of the environment and security. The EC had invited a group of space agencies/organizations: ASI (Agenzia Spaziale Italiana), BNSC (British National Space Centre), CNES (Centre National D'Etudes Spatiales, France), DLR (German Aerospace Center), EASC (European Air and Space Conference), ESA (European Space Agency, and Eumetsat (European Organization for the Exploitation of Meteorological Satellites, Darmstadt, Germany). 1)

The goal of GMES is to develop operational information services on a global scale, using both space- and ground-based monitoring systems, in support of environment and security policy needs. Overall, GMES will contribute to the European Strategy for Sustainable Development. The GMES program was endorsed at the Gothenborg (Sweden) Summit in June 2001 by the Heads of State and Government of the countries of the European Union (EU). An exploratory initial period, undertaken jointly by the EC and ESA, took place between 2001 and 2003.

Copernicus is the new name of the European Commission's Earth Observation Programme, previously known as GMES (Global Monitoring for Environment and Security). The new name was announced on December 11, 2012, by EC (European Commission) Vice-President Antonio Tajani during the Competitiveness Council.

In the words of Antonio Tajani: "By changing the name from GMES to Copernicus, we are paying homage to a great European scientist and observer: Nicolaus Copernicus (1473-1543). As he was the catalyst in the 16th century to better understand our world, so the European Earth Observation Programme gives us a thorough understanding of our changing planet, enabling concrete actions to improve the quality of life of the citizens. Copernicus has now reached maturity as a programme and all its services will enter soon into the operational phase. Thanks to greater data availability user take-up will increase, thus contributing to that growth that we so dearly need today."

Table 1: Copernicus is the new name of the former GMES program 2)

A GMES Program Office (GPO) and a GMES Advisory Council (GAC) have been set up in early 2004. The GAC is an ad hoc advisory interface between the EC, ESA and their member states. Also in 2004, ESA initiated studies to explore the technical aspects of the Space Component of GMES based on user requirements. The ESA Space Council meeting at ministerial level in Berlin, Germany (Dec. 5-6, 2005), confirmed again that the GMES program will be the second flagship of space policy after Galileo. 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14)

The EEA (European Environmental Agency) and its European Topic Centers (ETCs) coordinate and harmonize the collection of data within the framework of the EIONET (European Environment Information and Observation Network) with the involvement of about 300 institutions in EEA member states.

Key issues in this field include the monitoring of:

• International environmental conventions (environmental issues of a global nature). The EU has signed more than 40 international treaties to bring forward a more global dimension to environment and security (e.g. biodiversity, global change, desertification). The "Kyoto Protocol" is an example of "treaty monitoring" requirements. NATO and its Member States are increasingly concerned with non-traditional threats to security, including the consequences of environmental change.

• Environmental stress (environmental issues of a regional nature). Environmental stress poses a potential threat to security at all geographic levels. Taking preventative action on environmental stress is the most appropriate approach to preventing environmental conflicts.

• Risks and natural disasters/hazards (including humanitarian help). The major topics of natural hazards are: earthquakes, landslides and avalanches, volcanoes, forest fires, and floods. The service of forest fire detection and monitoring (including risk evaluation) is an important activity in this category.

GMES has been identified as a priority for Europe. It is an initiative set up jointly by the European Commission (EC) and the European Space Agency (ESA). The EC has expressed its intention to take the lead for the development and operation of GMES in the long term. ESA is in charge of implementing the GMES Space Component. A general cooperative EC-ESA agreement on the GMES initiative functions and services was signed on Oct. 27, 2005.

Realizing the importance and enormous challenges in coordinating the services and functions of the various space missions for the GMES user community - a 'Ground Segment Coordination Body' (GSCB) of all agencies in the EU member states was established in June 2005. The initial goals are to coordinate the ground segment and data management of the most important European (including Canadian) Earth observation missions in the GMES timeframe. These comprise the existing and planned ESA and EUMETSAT missions as well as the larger and important planned national missions, which will be operational in the early phase of GMES and are committed to contribute to GMES services. 15)

In March 2006, a GMES Bureau was established, set up within the Directorate-General for Enterprise and Industry of the European Commission. The GMES Bureau is responsible for creating an implementation strategy for GMES, developing a federated and structured demand for GMES services across the Commission and promoting GMES to both stakeholders and the wider general public. 16)

The goal of the GMES strategy is to establish by 2008 a European capacity which, through technological, institutional and political support will fully meet those objectives. The overall GMES architecture comprises four major elements: services, space observations, in situ observations, and data integration and information management.

In Feb. 2010, the EC set up the GMES Partners Board. The goal of the GMES Partners Board is to assist the Commission in the overall coordination of GMES. The tasks of this Board will include the following:

- To establish cooperation between Member States bodies and the Commission on questions related to GMES

- To assist the Commission in monitoring the coherent implementation of the GMES program

- To assist the Commission with the preparation of a strategic implementation framework of the GMES program

- To bring about an exchange of experience and good practice in the field of GMES and Earth observation.

Services component: led by EC (European Commission)
- Produces information services in response to European policy priorities in environment and security
- Relies on data from in-situ and space component

In-situ component: led by EEA (European Environmental Agency)
- Observations mostly within national responsibility, with coordination at European level

Space component: led by ESA (European Space Agency)
- Sentinels - EO missions developed specifically for GMES
- Contributing Missions - EO missions built for purposes other than GMES but offering part of their capacity to GMES (EU/ESA MSs, EUMETSAT, commercial, international)

Table 2: GMES is a EU led initiative with component responsibilities provided by various agencies (Ref 13)

1998

GMES initiative put forward by the EC (European Commission) in October 1998, referred to as the 'Baveno Manifesto', Baveno/Lago Maggiore, Italy

2000

GMES partnership formed between Member States, space agencies, industry representatives, user organizations and the EC

2001

ESA Ministerial Council, Edinburgh, UK: first GMES services are funded by ESA Member States (in parallel, EC funds GMES services through FP6)

2001

EU Summit, Gothenborg, Sweden: Heads of State and Government request that ‘the Community contributes to establishing by 2008 a European capacity for Global Monitoring for Environment and Security'

2003

The MERSEA (Marine Environment and Security for the European Area) Strand-1 Project was established in January 2003 to conduct an 18-month preparatory study of the key issues in setting up the marine elements of the joint EC and ESA initiative on GMES. MERSEA provided opportunities to: a) intercompare and evaluate operational ocean models and data assimilation systems; b) examine the operational oceanography data requirements; c) enable execution of demonstration application experiments with relevance and importance to the public.

2004

EC Communication, ‘GMES: Establishing a GMES capacity by 2008' introduces an Action Plan for a GMES capacity by 2008

2004

In July 2004, the EEA (European Environmental Agency) outlined the objectives and role of in-situ monitoring within GMES, followed by a first progress report on the development of the GMES in-situ monitoring component in November 2004

2004

EC/ESA Framework Agreement signed, providing the basis for cooperation in space, including GMES

2005

ESA Ministerial Council, Berlin, Germany: optional ESA GMES Space Component (GSC) Program adopted and first funds committed to specific GMES space hardware

2006

A GMES Bureau was set up within the EU, Brussels, Belgium

2007

European Space Policy adopted, recognizing GMES as a flagship of the European Space Policy, next to Galileo

2008

GMES Forum in Lille, France: five Core Services are officially launched: Marine monitoring, Land monitoring, Atmosphere monitoring, Emergency response and Security

2008

EC Communication, GMES: We care for a Safer Planet' establishes a basis for financing, operational infrastructure and management of GMES

2008

EC-ESA Agreement on GMES provides legal basis for EC FP7 contribution to GSC Program ESA Ministerial Council, The Hague: major ESA funding for GSC build-up

2008+

First operational services (fast-track data product pilot services) within GMES to be provided by a number of current operational missions of ESA, EUMETSAT, and those of the ESA/EUMETSAT member states

2010

GIO Regulation: EC proposes regulation for GMES Initial Operations (GIO), providing legal basis and EC funding for an operational GMES program

2013+

Sentinel launch: Sentinel-1A scheduled for launch, followed by successive Sentinel launches to complete operational space-based observation capacity

2014+

EU Operational GMES Program: aimed at ensuring long-term sustainability of the operational program

2016

GMES service provision will be part of GEOSS (Global Earth Observation System of Systems) with some products; GMES will also have access to data from other GEOSS entities

Table 3: Overview of major milestones in the GMES program (Ref. 14) 17)

 


 

Earth observation: CSC (Copernicus Space Component)

In October 2009, the EC issued a Communication on ‘GMES: Challenges and Next Steps for the Space Component' in which the respective roles of the European Union (EU), the EC and ESA within GMES in general, and within the GSC in particular, are addressed.

New terminology and concepts have been introduced. The EC leadership of the overall GMES program has been reiterated, declaring the intention to be the GMES Program Manager and to organize itself accordingly. ESA has been reconfirmed as the Coordinator of the GMES Space Component (‘GSC Coordinator') while the EEA (European Environment Agency) is proposed to coordinate the In situ Component.

Copernicus_Auto15

Figure 1: Copernicus Space Component: the dedicated Sentinels (image credit: ESA, Ref. 24)

GMES serves two main European policy requirements: 18)

1) Independent access to geospatial information for policy- and decision-makers to advance European and national agendas related to environment and security policies.

2) Federation of European contributions to the international GEOSS (Global Earth Observation System of Systems) program. GMES has been declared by European governments to be the main framework for Europe's contribution to GEOSS. However, this will not include the totality of GMES, but those elements deemed appropriate to be shared at the international level. GMES shall not only contribute to GEOSS, but shall also act as a recipient of data and information from external sources for the benefit of European users.

The GMES program, which is aiming for full operational provision of satellite data for GMES services, involves the use of existing and planned national space capabilities as well as the development of new infrastructure. The GMES Space Component program is intended to meet the requirements of the three pilot services identified by the EC for early implementation (land monitoring, ocean monitoring and emergency management) and other services to be deployed in the 2008-2020 period.

The GSC (GMES Space Component) program is built around five concepts of space missions or "Sentinels", plus access to existing and complementary missions from ESA Member States, EUMETSAT, Canada and third parties. Of the latter category the following missions are considered candidates for GMES operational service contributions - to get the program started:

- SPOT-5 of CNES, France (operating mission with a launch May 4, 2002)

- TerraSAR-X of DLR/EADS Astrium, Germany, with a launch on June 15, 2007

- COSMO-SkyMed of ASI, Italy (3 spacecraft with launches on June 8, 2007, Dec. 9, 2007, Oct. 25, 2008, and in late 2009)

- RADARSAT-2 of CSA/MDA, Canada, with a launch on Dec. 14, 2007

- Pleiades of CNES (2 spacecraft with launches in 2010 and thereafter)

- Jason-2 of EUMETSAT/CNES/NOAA/NASA with a launch on June 20, 2008

- MSG (Meteosat Second Generation) spacecraft of EUMETSAT (3 satellites with launches in 2002, 2005, and 2009)

- MetOp of EUMETSAT (3 satellites with a first launch on Oct. 19, 2006)

- DMC (Disaster Monitoring Constellation) of SSTL, UK [with 5 optical imaging satellites in orbit as of fall 2005: AlSAT-1, BILSAT-1, NigeriaSat-1, UK-DMC, and Beijing-1 (DMC+4)]

- RapidEye of RapidEye AG, Germany (5 optical imaging satellites with a launch on Aug. 29, 2008)

- EnMAP (Environmental Mapping and Analysis Program), a hyperspectral mission of DLR with a planned launch in 2017.

Copernicus_Auto14

Figure 2: Overview of the contributing fleet of Coprnicus satellites (image credit: ESA, Ref. 24) 19) 20)

 

GMES Sentinels:

The ESA Sentinels constitute the first series of operational satellites responding to the Earth Observation needs of the EU-ESA GMES program. The GMES space component relies on existing and planned space assets as well as on new complementary developments by ESA. 21) 22)

The following members of the Sentinel family have been identified as core elements of the GSC (GMES Space Component):

Sentinel-1 is a C-band interferometric SAR mission, consisting of a pair of satellites - to provide continuity to data so far provided by ERS-2, Envisat, and RADARSAT missions. The Sentinel-1 spacecraft cover applications such as observing sea ice zones and the arctic environment, surveillance of marine environment, monitoring land surface motion risks, and mapping in support of humanitarian aid in crisis situations.

Sentinel-1 will be flown in a dawn-dusk sun-synchronous orbit at an altitude of ~700 km with an exact repeat orbit of 12 days in support of multi-pass interferometry. With a SAR swath of ~250 km and a ground resolution of 5 m x 20 m, a 12 day quasi-global coverage can be obtained. The spacecraft design life is 7 years.

The spacecraft design is characterized by a single SAR (Synthetic Aperture Radar) instrument with selectable dual polarization, a deployable solar array, a large size on-board science data storage (1.4 TB at EOL), a very high X-band downlink rate 520 Mbit/s), and stringent requirements on attitude accuracy and data-take timing. In addition, the spacecraft will embark an OCP (Optical Communication Payload) unit allowing downlink of recorded data via a GEO terminal such as the EDRS (European Data Relay Satellite) of ESA. The launch of the first Sentinel-1 spacecraft is planned for 2013.

 

Sentinel-2 is a multispectral optical imaging mission for global land observation (data on vegetation, soil and water cover for land, inland waterways and coastal areas, and also provide atmospheric absorption and distortion data corrections) at high resolution to provide enhanced continuity of data so far provided by SPOT-5 and Landsat-7.

The payload reference concept is based on a pushbroom multispectral imager (MSI) featuring a swath of 285 km with the intermediate spectral band set of 9 bands in VNIR, 3 SWIR bands, (including a 2.2 µm channel), and a PAN channel ("supermode" at 7 m). The revisit requirements for Sentinel-2 are a geometric revisit of better than or equal to 7 days over all landmasses and inland waters. The coverage requirements call for imagery of size ~149 million km2 in 3-7 days. These coverage requirements are driven by the need for global land mass change detection over the time scale of days to weeks. The design life required is > 5 years (7 years) of operations.

The Sentinel-2 spacecraft will feature an OCP unit allowing downlink of recorded data via a GEO terminal. The first launch of Sentinel-2 is planned for 2013 (800 km orbit).

 

Sentinel-3 is an operational oceanography mission requiring the operation of 2 concurrent spacecraft. The main objective of Sentinel-3 mission is the provision of ocean observation data in routine, long term and continuous fashion with a consistent quality and a very high level of availability. In addition, the mission will be designed to generate land optical observation products, ice topography, vegetation and land hydrology products. The main mission objectives comprise: 23)

1) Operational Oceanography, i.e. the delivery of information needed to constrain and drive global and local ocean assimilation models actually, coupled ocean/ atmosphere assimilation models. For this, Sentinel-3 will deliver:

- Ocean color data

- Sea surface temperature data

- Sea surface topography data, including in particular an along-track SAR capability for addressing coastal zones sea surface topography and sea ice topography.

2) Global land applications, i.e. the delivery of information needed to derive global land products and services. These are:

- Land surface color

- Land surface temperature

- Land ice topography and inland water surface height data.

Sentinel-3 is an Earth observation mission including a medium-sized platform, large swath/medium spatial resolution optical instruments and a radar altimeter The final constellation of two satellites provides a worst case 2 day revisit time. The spacecraft carries a set of 4 main payloads:

- OCLI (Ocean and Land Color Instrument). OCLI is based on heritage from Envisat's MERIS (Medium Resolution Imaging Spectrometer) instrument but with improved wavelength bands (21 compared to 15 on MERIS) and sun-glint effects reduction.

- SLSTR (Sea and Land Surface Temperature Instrument). The SLSTR uses a dual viewing technique and operates across nine wavelength bands (plus 2 additional fire channels) supporting atmospheric correction. The spectral range of these channels is: 0.55, 0.66, 0.86, 1.37, 1.61, 2.25, 3.74, 10.95 and 12 µm plus the two fire channels with 3.74 and 10.95 µm. It provides a swath width of 750 km in dual and 1420 km in single view. The SLSTR has a spatial resolution in the visible bands of 500 m.

- SRAL (SAR Radar Altimeter), a dual-band (C+Ku) altimeter operating in conventional radar-altimeter mode as on Poseidon-3 (Jason-2), and in advanced SAR mode (burst mode) over sea ice and coastal regions (data so far provided by RA-2 on Envisat). SRAL is a mature concept supported by the strong heritage from Poseidon-3 and the CryoSat-2 SIRAL instrument techniques. It will provide the required ocean and sea-ice thickness measurements, as well as inland-waters and coastal measurements.

These instruments are complemented by a GNSS receiver, a DORIS terminal, and LRR (Laser Retroreflector).

The spacecraft design is characterized by a deployable solar array, stringent requirements on attitude accuracy, and the necessity to perform near-real time POD (Precise Orbit Determination) services to support data processing. The first launch of Sentinel-3 is planned for 2013.

 

Sentinel-4 and -5, these are two families of atmospheric chemistry monitoring missions, one instrument (Sentinel-4) on geostationary orbit (GEO) and one instrument (Sentinel-5) on low Earth orbit (LEO).

The actual implementation of the missions will be according to a flexible architecture which may lead to grouping some of them on single platforms.

- The Sentinel-4 payload (an Ultraviolet-Visible-Near- Infrared Spectrometer) will be embarked on the two MTG-S (Meteosat Third Generation–Sounder) satellites in geostationary orbit (planned to launch in 2020 and 2027). In addition, TIR (Thermal Infrared) sounder data on the same platform, and a cloud imager on the MTG-Imager platform will be exploited by the Sentinel-4 services.

- The Sentinel-5 payload will be carried on the MetOp Second Generation spacecraft (planned to launch starting in 2020) in a sun-synchronous low Earth orbit (at about 800 km mean altitude). The Sentinel-5 mission will consist of an UV-VIS-NIR and Shortwave Infrared spectrometer which will also house a TIR sounder and imager.

- Sentinel-5P (Precursor). To avoid gaps between Envisat (SCIAMACHY instrument data in particular) and Sentinel-5, and to ensure continuity of atmospheric services, a Sentinel-5P mission, similar to Sentinel-5 but with no TIR sounder and imager, will be launched in 2015. Services proposed will cover air quality, climate change and stratospheric ozone and solar radiation.

Copernicus_Auto13

Figure 3: GMES priorities and Sentinel notational definitions (image credit: ESA)

 

Copernicus_Auto12

Figure 4: GMES Space Component Long term scenario (launch dates of Sentinels are indicative), image credit: ESA 24)

 

GMES-1 requirements and definition phase (2005/7)

The GMES-1 mission (Sentinel-1) is planned for a launch in the time frame 2012+. The objectives are to address the observational needs of Sentinel-1 and -3. The spacecraft is seen as the follow-on mission to Envisat. GMES-1 will include a C-band SAR instrument to continue the interferometric and ocean/ice/land measurements of Envisat and ERS-2, and to provide ocean color observations. Other capabilities are in the planning stage. 25) 26)

The mission objectives aim at customer satisfaction taking into account funding sources and the interest of the different customer categories including:

- Sponsors: Technology Research & Development Agencies, Departments of Industry

- Earth Observation Investigators: Studying methods and developing applications

- `End users': Earth scientists, institutional users, service providers, (other) companies, (other) professional & private users, etc.

• Earth observation research: a) to study the radar signature of the Earth, and b) to establish application potential for Earth science support as well as for operational services

• Need of best possible sensitivity, temporal & spatial resolution, image quality

• Request multi-parameter space: different wavelengths, (full) polarimetry, interferometry

• The end users represent an immense but also a very diverse community.

Programmatic priorities and GMES pilot services:

The origin of the mission requirements have their roots in the following programmatic priorities and GMES pilot services aiming at:

- Monitoring the European marine environment. This means for instance daily surveillance of marine transport corridors (example: the English Channel, the Strait of Gibraltar, etc.) with information delivery within one hour of observation.

- Monitoring and assessing land surface-motion risks. Observation cycles of subsidence measurements over all major urban areas and surveillance of transport infrastructure (e.g. gas pipelines) on a two-week basis.

- Open ocean surveillance. Of particular interest are the Arctic and Antarctic environment with their sea-ice regions. Daily monitoring of ice-infested areas along the major transport routes. Open ocean monitoring implies the provision of wind and wave products similar to those of ASAR.

- Forest monitoring. This involves the generation of annual global maps for climate change detection services as well as support of sustainable management and nature protection.

- Water management and soil protection. This involves such services as monthly global mapping of the environmental state to support the EU's thematic strategy on soil protection. Currently, surface soil moisture is being derived from ASAR data of Envisat for southern Germany.

- Forest fire and land management. Provision of monthly global coverage for the mapping of burnt regions and for flood risk assessment. Furthermore, provision of fast global on-demand access services for real-time awareness services for floods.

- Food security and crop monitoring. An example is rice mapping in China - currently, a pilot test service, referred to as Dragon Project, for the Hinze region is using single-date HH/VV Envisat data of the ASAR (Advanced SAR) instrument.

- Global mapping for the humanitarian community. This service requires fast global access on demand.

Operational requirements:

- Long-term continuity: At least 15 years of service

- Performance and data quality: ERS/Envisat

- Operations: Systematic with on-demand option

- Processing and archiving: All products to level-1

- Distribution: From archive in near real-time

- Coverage & revisit: Global monthly, fast global access on demand, regional bi-weekly, regional daily (12 hourly desirable)

- Timeliness: 3 hours (1 hour desirable for special cases)

- Center frequency of SAR instrument: C-band at 5.405 GHz

- Interferometry: yes, service dependent

- Spatial and radiometric resolution: ERS/Envisat baseline

- Swath width: Minimum 200-300 km, larger desirable, 20 x 20 km for wave mode

- Polarization: VV (wind, waves and oil spills), HV or VH (ship detection), VV or HH, VV and HH (desirable), VV and VH or HH and HV, full polarimetry (best for classification)

Technical concept:

A two-satellite constellation with four nominal operational modes designed for inter-operability with other systems for full compliance with user requirements.

- Stripmap Mode (SM):
Stripmap mode, dual polarization, medium size swath, high radiometric performance, very high spatial resolution

- Interferometric wide-swath mode (IW):
ScanSAR mode, dual polarization, large size swath, high spatial resolution, burst synchronization for ScanSAR interferometry

- Extra-wide swath mode (EW):
ScanSAR mode, dual polarization, very large size swath, low spatial resolution

- Wave mode (WV):
Sampled stripmap mode, single polarization, low data rate.

System requirements:

- Orbit: Sun-synchronous near circular orbit with an altitude of about 700 km

- Mean local solar time at 18 hours on ascending node (dawn-dusk orbit)

- Repeat cycle: 12 days

- Cycle length: 175 orbits

- Swath width: 80 km (SM), 240 km (IW), 400 km (EW), 20 km x 20 km (WV)

- Polarization: VV+VH or HH+HV (all modes)

- Spatial resolution (ground range x azimuth): 4 m x 5 m, single look (SM); 5 m x 20 m single look (IW); 25 m x 80 m three looks (EW); 20 m x 5 m single look (WV)

- Noise equivalent sigma zero: -25 dB

- Radiometric stability: 0.5 dB

- Radiometric accuracy: 1.0 dB

 

Sentinels operations concept:

The following list summarizes the main characteristics of the Sentinel missions (S1, S2, and S3) which determine the operations concept: 27)

• Each Sentinel spacecraft is designed such that its on-board resources allow to store the complete instrument schedule covering the default mission plan duration, i.e. 4 days, 14 days and 27 days respectively for each Sentinel mission family

• In terms of on-board autonomy, each satellite can operate nominally for at least 72 hours without any ground intervention, even in the case of a single on-board failure

• Visibility of the spacecraft from the primary TT&C station will be on average 10 minutes every revolution except for up to four consecutive blind orbits (every 24 hours) during which the ground track does not cross the Kiruna visibility region

• Very stringent QoS (Quality of Service) requirements ensuring that data products are accurate, complete and provided on time. In particular, all Sentinels feature Near-Real time delivery of data within 3 hours from sensing.

An innovative Sentinels operational concept has been defined based on the use of a novel mechanism to schedule the telecommand execution using the spacecraft orbit position, as provided by the on-board GNSS receiver. This allows to drastically reduce the number of ground station passes required to support the routine mission and to manage the monitoring and control of the 3 systems under a single spacecraft controller position.

Sentinel downlinks: Sentinel-1,-2, and -3 produce approximately 4 TByte of data per day. The downlink of that data to the ground represents one of the major challenges of the program. Each satellite requires between 6 (Sentinel-3) and 16-18 (Sentinel-1, -2) minutes of downlink time per orbit on average, with a modulation and coding scheme which can be accommodated within the 300 MHz X-band bandwidth available. A new modulation scheme has been designed and implemented and all Sentinels make use of the same payload data transmission subsystem, the X-band TXA (Transmission Assembly). In addition, Sentinel-1 and -2 are being equipped with an additional downlink subsystem, an OCP (Optical Communications Payload), including a Laser Communication Terminal (LCT) to transmit instrument data a geostationary data relay system, the EDRS (European Data Relay System) to the ground.

There are two downlink channels available. Each channel has an effective downlink rate of 260 Mbit/s. The Sentinels provide the same on-board interface from the mass memory to the input to the TXA and, for Sentinel-1 and -2, to the input of the LCT. It is possible to downlink data from memory, with or without deletion after downlink; to downlink data from memory while new data is stored in memory; and to provide quasi-real time downlink of data, with data acquired and stored in the mass memory and immediately downlinked.

Although the mass memory management of the different Sentinels is designed in response to the specific requirements of each mission, all Sentinels support a downlink planning allowing the download of different data with different priorities, e.g. Near Real Time (NRT) data downlink prior to other data. And for Sentinel-1 and -2 the downlink planning allows to route the data to either the X-band downlink or the optical downlink.

The Sentinels FOS (Flight Operations Segment) is being designed making extensive re-use of elements developed in the context of previous Earth Observation ground segments. A single Sentinel MCS (Mission Control System) will allow monitoring and control of all spacecraft, while commonalities across unit models will be applied for the Sentinel spacecraft simulators development.

Once operational, GMES will be unique in the world. GMES will provide what is done successfully today in meteorology, namely to combine satellite and in situ observations with forecast models, to obtain information services needed by institutions and individual citizens alike. GMES will extend this concept to domains such as agricultural monitoring and food supply forecasting, fisheries, ship-routeing, urban planning, climate change studies, emergency response, humanitarian aid, external EU actions, border surveillance or maritime security, to name just a few.

Copernicus_Auto11

Figure 5: High-level components and competences allocation (Ref. 24)

 


 

GSE (GMES Services Element)

In 2001 the first ESA program dedicated to GMES, called the "Earthwatch GMES Service Element" (GSE), was approved by the ESA Ministerial Council. As a consequence, in February 2003, 10 GSE thematic projects have been launched after a competitive tender by ESA/ESRIN, each of them aiming to deliver pre-operational information for monitoring and management of environment and security to end users in order to fulfil European policies. These GSE services will make best use of existing EO (Earth Observation) systems and will also help to define and establish the longer-term needs for future operational EO systems. 28)

The GMES Services are categorized into three Earth system domains (Atmosphere, Marine and Land) and three crosscutting domains (Emergency Management, Security and Climate). Once fully operational, they will provide standardized and validated multi-purpose information products for a broad range of EU policy-relevant application areas, many of which are implemented at national or regional level. The development of the GMES Services and their transition to pre-operational status has been funded primarily within the GMES Service Element of the European Space Agency and the 6th and 7th Framework Programs of the European Commission, with EU Member State funding having also supported development and customization (Ref. 21).

The information products of the six Service domains are at various stages of operational maturity (in 2011). Several are now operational and part of the EC-funded GIO (GMES Initial Operations) phase (2011-2013). Others are undergoing final prototyping and operationalization with an aim to be funded in the anticipated GMES operations phase (2014+).

Brief descriptions of the GMES Service domains are provided below along with an indication of maturity level.

• GMES Atmosphere Monitoring Service: aims to provide data records, nowcasts and forecasts of global atmospheric chemistry and constituents essential for monitoring climate, air quality, solar and UV radiation. Information products from this service are completing operationalization activities and should be included in the GMES operations phase.

• GMES Marine Monitoring Service: aims to provide a suite of information products for global oceans and European sea basins targeting maritime safety, environment and safety based on forecasting models and measurements of variables such as sea level, ocean color, sea surface temperature, salinity, sea state and wind, oil pollution, and sea ice. Information products from this service are completing operationalization activities and should be included in the GMES operations phase.

• GMES Land Monitoring Service: provides crossborder, harmonized geo-information at global to local scales addressing land-cover/land-use, biophysical parameters and change monitoring to support spatial planning and monitoring of freshwater, crops, forests and land carbon. European land-cover/land-use products are entering the GIO phase while global land monitoring products are completing operationalization activities and should be included in the GMES operations phase.

- GIO land operational in March 2013: After eight years of GMES research projects in the field of land monitoring and the starting of the GMES/Copernicus Initial Operations (GIO) in 2011, the Copernicus Land Monitoring Service has become operational. 29)

• GMES Emergency Management Service (EMS): targets the whole emergency cycle for humanitarian crises, natural and man-made emergencies by delivering risk assessment maps and, for emergency situations, both pre-disaster reference products and timely post-disaster assessment maps. This Service is entering the GIO phase with some of the risk-mapping related activities completing operationalization activities.

- The Copernicus EMS-Mapping has been fully operational since the 1st of April 2012, providing all actors involved in the management of natural disasters, man-made emergency situations and humanitarian crises with timely and accurate geo-spatial information derived from satellite remote sensing and complemented by available in situ or open data sources. The service can be activated for many types of disasters, including floods, forest fires, landslides, severe storms, earthquakes, volcanic eruptions, humanitarian crises, tsunamis and technological disasters. 30)

• GMES Security Service: aims to support European Union policies related to EU border and maritime surveillance as well as EU External Action support. Information products from this service are completing operationalization activities and are expected to be included in the GMES operations phase.

• GMES Climate Service: aims to support the European Union and Member States in formulating their strategies and policies to mitigate and adapt to climate change. The initial set of information products to come from this Service is still being consolidated in collaboration with European Institutional users, as well as current providers of complementary information products.

It is anticipated that the free availability of products from the GMES Services, coupled with the full and open availability of data from the GMES-dedicated Sentinel satellite missions, will give rise to a so-called GMES downstream sector. The services developed in the downstream sector will be those which fill niches not covered specifically enough by the GMES services. These might include regional or local information at resolutions higher than provided by the GMES Services, such as streetscale air quality forecasts, or information of interest to narrow sectors of users such as the off-shore wind industry. It is expected that downstream services become self-sustaining by securing funding directly from their users or through non-GMES institutional funding (Ref. 21).

Copernicus_Auto10

Figure 6: High-level view of the GMES architecture (image credit: EC, ESA)

Copernicus_AutoF

Figure 7: Overview of GMES system architecture (image credit: ESA)

 

GSCDA (GMES Space Component Data Access)

The GMES Space Component (GSC) includes the Sentinels satellites and the coordinated access to ESA and European EO missions.

In 2007, ESA and the EC (European Commission) signed an agreement to allow ESA to ensure the coordinated and timely supply of satellite-based Earth Observation data for the preoperational phase of GMES from 2008 to 2010.

ESA is managing the GSCDA project in the frame of the FP7 space program as part of the European Space Policy focusing on coordinating the access to space-based observation data to support GMES services.

ESA targets the introduction of the following capabilities to achieve a coordinated access to data from current and future missions. These efforts are supported in parallel through CEOS (Committee on Earth Observation Satellites) and GEOSS (Global Earth Observation System of Systems).

HMA (Heterogeneous Mission Access). GMES data access implies also a coherent data access to ~40 different EO missions (inside and outside of ESA). Aside from the current and future ESA missions (Envisat, GOCE, SMOS, CryoSat-2, MSG-3, Swarm, ADM/Aeolus, GMES Sentinels, etc.), the European space agencies are also cooperating with their EO missions to make HMA become possible for a global EO community. 31)

Full members of the HMA Architecture Working Group are: CSA, CNES, DLR, ESA, EUMETSAT, and ASI. 32)

QA4EO (Quality Assurance Framework for Earth Observation data). 33) 34)

LTDP (Long Term Data Preservation). 35)

Copernicus_AutoE

Figure 8: Overview of the GSC and HMA (image credit: ESA)

Copernicus_AutoD

Figure 9: GMES pre-operational status in 2012 (image credit: ESA) 36)

Copernicus_AutoC

Figure 10: Sentinels data production highlights (image credit: ESA)

Copernicus_AutoB

Figure 11: Updated GSA and HMA illustration of the ground segment architecture in 2012 (image credit: ESA, Ref. 36)

Copernicus_AutoA

Figure 12: Overview of GMES components and responsibilities (image credit: ESA,Ref. 36)

Copernicus_Auto9

Figure 13: GMES core and collaborative ground segment (image credit: ESA)

Copernicus_Auto8

Figure 14: Core ground segment functions (image credit: ESA)

Copernicus_Auto7

Figure 15: GMES core ground station network (image credit: ESA)

Copernicus_Auto6

Figure 16: Data Core NRT and Offline Processing Centers (image credit: ESA, Ref. 36)

Copernicus_Auto5

 

Copernicus/GMES data policy:

"Full and open access to Sentinel data for all users."

As part of the ESA-led GMES Space Component (GSC), which guarantees access to a variety of EO data, ESA and the EC worked together to define the principles and implementation scheme of the Sentinel Data Policy. The goal is to strife for maximum availability of data & corresponding access services in support of increasing demand of EO data in the context of climate change initiatives and for the implementation of environmental policies, also resulting in humanitarian benefits.

This includes: 37) 38) 39) 40) 41)42) 43)

1) In principle, anybody can access acquired Sentinel data; in particular, no difference is made between public, commercial and scientific use and in between European or non-European users (registration is required).

2) The licenses for the Sentinel data are free of charge.

3) The Sentinel data (as far as generated out of the Core Ground segment) will be made available to the users via a "generic" online access mode, free of charge. "Generic" online access is subject to a user registration process and to the acceptation of generic terms and conditions.

4) Additional access modes and the delivery of additional products will be tailored to specific user needs, and therefore subject to tailored conditions.

5) In the event security restrictions apply to specific Sentinel data affecting data availability or timeliness, specific operational procedures will be activated.

The Sentinel Data Policy is one element of the overall GMES Data and Information Policy. The Sentinel Data Policy is applicable to data derived from Sentinel missions (1-5, S-5 precursor) and the respective core ground segment.

ESA/EC joint principles for the Sentinel Data Policy:

- Approved by ESA member states at PB-EO in September 2009

- To be approved by EC as part of Regulation of the European Parliament and the Council at the end of 2010.

Sentinel HLOP (High Level Operations Plan): 44)

• ESA will generate a Sentinel HLOP, which will define the priorities in data acquisition/provision applicable to all Sentinel missions during the operations of the GSC.

• HLOP will prioritize user access in order to mitigate impact of technical or financial constraints based on the use of data and the rules contained in the GMES declaration

• Priorities are applied only in case of technical or financial constraints or incompatibility of requirements exceeding the satellite or ground segment capacity. ESA's approach is to minimize the cases for which a priority scheme is needed, through the maximization of systematic acquisition, of systematic processing and of systematic data availability.

Legal framework of the EU-ESA cooperation for Copernicus (Ref. 24):

1) The Regulation, published in April 2014, establishes the operational EU Copernicus programme, the funds (budget 2014-2020: EUR 4.3 billion) allocated to each Component and the responsibilities of all parties involved. It forms the legal basis for the establishment of the EU-ESA Copernicus Agreement.

2) The EU-ESA Agreement, signed in October 2014, defines the terms and conditions relating to the implementation of the Copernicus Space Component by ESA, e.g.:

- Technical tasks entrusted to ESA within the allocated budget

- Contracting Authority and procurement rules

- Reporting to the Commission

- Assets ownership transfer.

The EC delegated regulation on Data and Information Policy to ESA. It entered into force in December 2013 after several months of negotiation. This regulation is in line and reinforces the Sentinel Data Policy approved by ESA MSs in September 2013, which stipulates:

• Open access to Sentinel data by anybody and for any use

• Free of charge data licenses

• Restrictions possible due to technical limitations or security constraints.

Copernicus Contributing Missions data access will follow their owners data policies.

Copernicus_Auto4

Figure 17: Copernicus Space Component: the Ground Segment (Ref. 24)

 

GMES-S (GMES-Security):

The technical implementation of the GSC (GMES Space Component) is entrusted to ESA. The objective of the GSC program is to fulfil the space-based observation requirements in response to European policy priorities. It comprises two types of satellite missions; the dedicated GMES missions (Sentinels), developed by ESA specifically to meet the Earth Observation needs of GMES services, and the GCMs (GMES Contributing Missions), a number of existing and planned Earth observation satellites from European, national or commercial organizations, which were developed for other purposes but still providing valuable data for GMES. 45)

Hence the GCMs are contributors of the GSC, which can be seen as a System of Systems. The conditions under which their data are made accessible to GMES (e.g. ordering mechanisms, processing level, delivery timeliness, data licensing, etc) are contractually stipulated with the mission owners on an individual basis.

The proposed technical solution for the GMES-S dual data access system is conceived to deliver EO information for security applications to a wide range of European, National, and Regional organizations across the EU. Security products are increasingly demanding in terms of resolution -better than 1m-, responsiveness -better than several hours from request to delivery-, and frequency. The most demanding needs originate in joint operations for crisis response, which require the fastest responsiveness. 46)

ESA's proposed GMES-S GCS concept attempts to focus on the issue of filling in the gaps found in the European ground segment infrastructure.

The first performance driver is very high responsiveness (NRT), combined with very high spatial resolution. This is a must for fast detection and for monitoring changing targets during crisis situations. The second key performance driver is high image quality with moderately fast reaction, required for optimal characterization of already detected and monitored targets. Hence, the operations are divided into:

• Interactive operations which require a specific user observation request or a specific number of repeated observations. The key quality parameter will be total system responsiveness from data request to product or service delivery. The purpose of interactive operations may be detection, monitoring or characterization.

• Systematic operations which require a long term user request for routine and repetitive observations of a given large areas permanently at risk. The key quality parameter will be latency from image acquisition to product or service delivery.

ESA's reference architecture for GMES-S GCS is depicted in Figure 18, linking the following high-level concepts:

- The "S of GMES" System, that gathers elements of the space and ground segments that fall under the exclusive control of a single GMES authority. Elements modelling the space segment are Sentinel 1 and 2, while ground segment elements modelling the downlink chain are: downlink ground stations, Sentinel payload processing centers, security thematic value adding, and data fusion centers, telemetry tracking and command ground stations, FOS (Flight Operations Segment), and the GMES security tasking coordination center.

- The "S of GMES" System of Systems that includes existing and committed European ground or space components with special relevance to meet security needs, not specifically designed for GMES. Elements modelling the space segment are ESA data relay satellites and European security satellites. The ground segment elements modelling the downlink chain are: ground stations, payload processing centers, value adding and data fusion centers, human intelligence, in-situ data, and general knowledge, FOS, European security mission tasking centers and final users.

National and pan-European institutions handle the listed components under various governance models. Cooperative efforts to GMES guarantee data supply and availability.

There are external contributing missions to GMES-S, namely spatial high resolution commercial systems: Canadian SAR missions, EU military missions, GPS and EUMETSAT. Likewise, Norwegian and Israeli ground stations take part in the system for telecommand uplink or data downlink from Arctic, Antarctic and Israeli facilities.

Copernicus_Auto3

Figure 18: ESA's reference architecture for the GMES-S GCS configuration (image credit: ESA, GMV)

CTDA (Coordinated Tasking and Data Access): The CTDA constitutes the heart and the differential element of the proposed solution for GMES-Security. Requests to be addressed demand a highly interactive, operating in fast response mode. In addition, the system must handle simultaneously requests of multiple crisis scenarios. At the same time, the GMES-S space component capabilities an cooperating missions must efficiently be combined, articulating all assets in a system of systems.

The goal of the CTDA mission is : (i) to respond to the information request, (ii) to task assets and ensure that requested products are planned, and (iii) to provide the location of archived data corresponding to the user requests. Figure 19 shows the CTDA interaction with conforming elements:

Copernicus_Auto2

Figure 19: Tasking/planning overview: CTDA interaction with conforming elements (image credit: ESA, GMV)

• GMES Security Coordination Center hosts the CTDA component which processes requests converting them to tasking/ planning request to elements within the system of systems.

• Mission Planning, uptakes CTDA requests into its planning cycle accounting for applicable data, rules, constraints, allocated data downlink windows (ground stations/European Data Relay Satellites –EDRS-), and allocated uplink windows.

• The EDRS is managed through a dedicated segment and provides its uplink and downlink availability to GMES-S (for data relay to/from the EO satellites). This availability is a main input to the GMES-S mission planning cycles.

• The European Mission Tasking Center receives observation requests and incorporates them into its tasking/planning cycle. Provides feedback in terms of approval or rejection of the observation request.

• External systems or non-European systems that provide a tasking/planning interface according to a reference SLA (Service Level Agreement).

The CTDA counts with a central management point for the tasking and cataloguing of information, to ensure consistency of the overall tasking/planning, to provide feedback to the user and to ensure availability of EO products to end users.

The external systems information hosted at CTDA are the SLA, the catalogue and updated tasking/planning information. CTDA copes with the fact that only part of the considered services may be available from target cooperating missions. The information flows from CTDA to GMES and any external systems are found in Figure 20.

Copernicus_Auto1

Figure 20: Central hosting of tasking/catalogue information (image credit: ESA, GMV)

The proposed CTDA approach is basically trying to establish a central catalogue built up from the mirroring of all available external catalogues. For users accessing the archived data, the CTDA acts like a master catalogue. Although user requests for catalogue information and archive data can be secured through standard GMES-S security layers, once end users obtain the data location coordinates, specific data access mechanisms associated to the external archive being accessed are activated.

 


 

Copernicus – Dawn of a new era

The start of operations of Copernicus, Europe's Earth Observation and Monitoring Program, marks the beginning of a new era. First, because we have moved from GMES to Copernicus, secondly because we have moved from a research project to an operational program and thirdly because we have moved from a budget of €1.3 Bn to one of €4.3 Bn. In other words: the research projects, which were limited in scope and in time, have been replaced by a multi-annual program based on a proper program regulation that ensures the long-term availability of Earth observation data from Copernicus up to and including the year 2021. It will thus create the conditions which are needed in order for small and medium-sized enterprises to invest in downstream applications, which they offer to their clients, thus creating jobs and growthBy making its data, analyses, forecasts and maps freely available, Copernicus contributes towards the development of new innovative applications and services, tailored to the needs of specific groups of users, which touch on a variety of economic and cultural activities. 47)

Copernicus will serve society in many ways including timely environmental monitoring, managing disasters as well as creating a thriving downstream sector generating significant economic benefits. The implementation of its fully operational phase will encompass the launch of six families of dedicated, EU-owned earth observation satellites and instruments - the so-called Sentinels – and the ramp-up of the 6 Copernicus Services in the fields of atmosphere-, marine- and land-monitoring, climate change, emergency and security.

The first of the dedicated Sentinel satellites is in orbit since 2014, with more satellites to be launched in the months and years to come. The first operational Copernicus services are already available. The Emergency Management and Land Monitoring services are operational since April 2012, and are joined now by the Marine Environment and Atmosphere Monitoring services. The other two services are continuously building up and should become operational by end 2015 or early 2016.

Copernicus contributes to the excellence of the European industry in space – a highly strategic sector with strong growth potential, which will provide the jobs of the future. Copernicus total financial envelope is close to € 4.3 Bn during 2014-2020. Copernicus is expected to deliver direct and indirect benefits amounting to some € 30 Bn over the period 2014-2030, and the program will be critical to create and maintain some 40.000 skilled jobs in a high-tech sector of strategic importance for the EU.

The European Commission has the overall responsibility for Copernicus and for the coordination among its different components including management of the budget, overseeing the implementation and ensuring the coordination of Copernicus with related activities at national, EU and international level. The Commission also facilitates coordinated contributions from Member States for the operational delivery of data, supports the development of the services, ensures the complementarity and consistency with other EU policies and promotes a stable long-term investment climate.

2014 was a busy year for us: The legal framework of the program, the Copernicus Regulation was adopted, Sentinel-1A was launched successfully and key agreements with our European partners have been signed. The development of the space component, including the launch of the dedicated Sentinel satellites, has been delegated to the ESA (European Space Agency). The agency will ensure the technical coordination of the Copernicus Space Component, define its overall systems architecture and its evolution, ensure its technical coordination and develop new dedicated missions.

EUMETSAT will operate the Sentinel -3, -4, -5 and -6 missions. EUMETSAT will fly the Copernicus Sentinel-4 and Sentinel-5 atmosphere monitoring instruments on its Meteosat Third Generation (MTG) and MetOp Second-Generation (MetOp-SG) satellites, respectively, delivering unparalleled data services to Copernicus users. The operations of the Sentinels have been entrusted to ESA and to EUMETSAT, according to their specific know-how. The Sentinels are owned by the European Union.

One aspect, which makes Copernicus unique and distinguishes it from satellite missions of other countries, is the fact that the European Commission has entrusted service operators with implementation tasks to develop, ramp-up and operate the various Copernicus Services with the aim of transforming satellite data into user-friendly information and products. The European Center for Medium-Range Weather Forecasts (ECMWF) and Mercator Océan have been tasked with running the Atmosphere, Climate Change and Marine services. The emergency service is run by a consortium coordinated by e-Geos. Moreover, the European Environment Agency (EEA) is in charge of the land service and will coordinate the provision of data from in situ infrastructure. Additional services in the security area will be provided by the European Agency for the Management of Operational Cooperation at the External Borders of the Member States of the European Union (FRONTEX) and the European Maritime Safety Agency (EMSA).

Copernicus also builds on existing space infrastructure that does not form part of the family of dedicated Sentinel satellites. Thus, Copernicus provides a budget for acquiring data through ESA and EUMETSAT from satellites operated by commercial companies, the EU Member States or third countries. These are known as "contributing missions" and have provided satellite data for the program since its inception. They will continue doing so, particularly where very high resolution data are required, such as in the Land Monitoring, Emergency or Security applications.

EU Member States contribute to Copernicus in several ways: through the provision of nationally-owned space infrastructures, through the supply of data from non-space ("in situ") data sources, or by participating, under the coordination of the European Commission, in the "collaborative ground segments", in which Member States can have direct access to Sentinel data by funding and developing their own ground segment facilities (processing and archiving centers, country-specific applications, etc.).

As a global actor on the world stage, the EU requires independent information on how its policies and decisions impact and interact with other countries and regions in the rest of the world. Copernicus provides Europe with an autonomous capacity for Earth Observation, whilst simultaneously setting the stage for European participation in global initiatives both bilateral and multilateral. The free and open data policy of the Copernicus program fosters the role of "soft power" in the international arena.

By making its data, analyses, forecasts and maps freely available, Copernicus contributes towards the development of new innovative applications and services, tailored to the needs of specific groups of users, which touch on a variety of economic and cultural activities.

Copernicus_Auto0

Figure 21: Overview of the Sentinel family spacecraft missions (image credit: ESA) 48)

The Sentinel missions mark a new era in Earth observation focusing on delivering a wealth of operational data for decades to come. The six different missions carry a range of state-of-the-art technologies to supply a stream of complementary imagery and data tailored to the needs of Europe's environmental monitoring Copernicus program.

 

• October 20, 2017: With six Sentinel satellites in orbit and more to come, the Copernicus program produces petabytes of data every year. In order to put those at use and benefit the EU citizens, current and potential users need to be made aware of the power of the data and be given the means to harness it in the most efficient way. As a consequence, many new ideas and concepts in terms of User Uptake are emerging and exciting times are coming for Copernicus users! 49)

- One of the objectives of the EC (European Commission) is to maximize the use of Copernicus data by and for public end-users, which includes national and local authorities and policymakers as well as civil servants in general.

- Based on this objective, a number of actions have been implemented by the Commission such as the launch of the Copernicus Relays and the Copernicus Academy, two networks to serve EU and non-EU citizens, academics, entrepreneurs and businesses and the Copernicus User Forum, a governance structure composed of experts nominated by the Copernicus Participating Countries which advise the Commission regarding the identification of user requirements, the verification of service compliance and the coordination of public sector users.

- The Spanish Ministry of Agriculture and Fisheries, Food and the Environment (MAPAMA), which is one of the representatives of Spain at the Copernicus User Forum, has identified an underutilization of Copernicus data and information within public entities due to the limited knowledge of the benefits that Copernicus can bring to the workflow of Spanish public administration.

- For this reason, the Ministry is implementing a series of Copernicus User activities around the country. Last month, it organized, jointly with the Laboratory for Image Processing of the University of Valencia (one of the Copernicus Relays) a workshop dedicated to demonstrating how Copernicus can contribute to monitoring the ecological status of inland, coastal and transitional water bodies, and how the Directorate General for Water could integrate this information into their monitoring and reporting activities.

- The workshop focused on promoting the use of Copernicus; identifying user requirements and potential users (with and without remote sensing knowledge); and assessing potential gaps between the Copernicus services and products and the needs of the public users.

- Elisa Rivera Mendoza from MAPAMA, and coordinator of the Spanish Copernicus National User Forum explained that "a clear proof that we have still so much to do it is the limited use of Copernicus products and services by the public administrations which are one of the largest potential communities of users. If the benefits and applications of Copernicus are well known, then the demand for such products would really take off. Copernicus uptake activities in Spain are conceived to ensure that the program is better known and therefore widely used."

- So, why and how can public authorities and civil servants integrate Copernicus data into their water management workflow?

- Copernicus-derived information can be complementary to in situ information which public administrations are already handling, and be used for reporting purposes such as the national reporting on the quality of water under the Water Framework and Nitrates Directives.

- Reliable information and variables (e.g. water quality, soil moisture dynamics, evapotranspiration levels, water consumption in irrigated surfaces) have proven to be very useful for public authorities involved in the management of hydric resources. Therefore, imagery from Copernicus Sentinel satellites can contribute to monitoring the natural and available water resources of Spain and serve as an input for the respective river basins and water management plans.

- Information from Copernicus services can also be of great use, for instance information from the Copernicus Land Monitoring Service to monitor use of nitrates which end up polluting rivers, lakes and aquifers; Very High Resolution land cover / land use products in riparian areas; as well as coastal water quality monitoring information from the Marine Environment Monitoring Service, etc.

- The use of Earth Observation data would improve the quality of data used by public administrations. This would have a considerable impact on the management and the decision-making process – as public authorities and civil servants who have more accurate information about natural resources, can take better informed and more efficient decisions, and could simplify reporting obligations vis-à-vis several national and EU directives.

- The Copernicus program can also provide information on flood-prone areas. This could serve public administration to improve methods for delineating these areas, and therefore to better assess and minimize the damages in case of flood events.

- Another takeaway of the session was that public authorities can obtain Copernicus information to monitoring mountain ranges and quantifying the volume of snow accumulated in these areas. They would be able to spot potential risks of avalanches and floods during periods of rapid thawing.

- Antonio Ruiz Verdú, from the Laboratory for Image Processing of the University of Valencia, gave his view on the Spanish User Uptake activities and noted that "there are now good examples in Spain of cooperation between the administration and members of the Copernicus Academy in order to promote opportunities in the Copernicus downstream sector. This cooperation is helping to bridge the so-called Science-Policy gap". Ruiz Verdú also highlighted that "the University of Valencia is involved in different Copernicus R&D projects with the purpose of transferring this knowledge to end-users of the public administrations".

- As a final message, Elisa Rivera also referred to the "great role that universities and leading research centers are now playing, as members of the Relays and Academy networks, since they contribute to promote and build capacity among public administrations on the use of Copernicus products and services".

- MAPAMA is organizing upcoming user uptake activities for public authorities and civil servants involved in a wide range of domains such as: smart cities (workshop on Copernicus for Green Growth and Smart City development -28 November), marine environmental management (in 2018), agriculture (in 2018), amongst others.

• October 17, 2017: ESA and Enterprise Ireland have signed an agreement that gives Ireland access to data from the Copernicus Sentinel satellites and helps Ireland to exploit these data to benefit their country. The agreement was signed by Josef Aschbacher, ESA's Director of Earth Observation Program, and Conor Sheehan from Enterprise Ireland and Irish Delegate to ESA, in the presence of John Halligan Ireland's Minister of State for Training and Skills. 50)

- While data from the Sentinel satellites and missions contributing to the Copernicus program are freely accessible for the Copernicus services, as well as to scientific and other users, the Collaborative Ground Segment Arrangement will facilitate Sentinel data exploitation in Ireland.

- The agreement not only guarantees that Ireland has access to data, but also ensures that ESA provides technical advice on setting up data acquisition and dissemination, and makes data processing and archiving software available to national initiatives.

• January 12, 2017: ESA and its Member States created the Sentinel Collaborative Ground Segment (CollGS) to further enhance the Sentinel missions exploitation in various areas. Today, the cooperation is also open to all European countries and Copernicus Participating States. Besides the challenging task of building and launching a satellite, a key indicator of the success of an Earth observation mission relies on ensuring that the data gathered are of good quality and made easily available to users. 51)

- The Sentinel Collaborative Ground Segment complements the Copernicus Ground Segment. This entails additional elements for specialized solutions in different technological areas, such as data acquisition, complementary production and dissemination.

• February 26, 2016: GÉANT – Europe's leading collaboration on e-infrastructure and services for research and education – and the European Space Agency (ESA) have finalized an agreement to distribute data from Copernicus, the EU Earth observation and monitoring program, to research and education users worldwide. 52)

• April 7, 2016: ESA and Australia's national geological survey, Geoscience Australia, today agreed to cooperate to ensure data from the EU's Sentinel satellites are accessible in Southeast Asia and the South Pacific. The agreement supports the Australian government and European Commission's partnership to ensure the EU's Copernicus Earth observation programme benefits their citizens and the broader international community. 53)

- A key component of the cooperation will be the establishment of a regional data access and analysis hub managed by Geoscience Australia (GA). This hub will greatly improve access to Copernicus data in a region which is densely populated and experiencing high rates of economic growth, but which faces significant challenges in areas where Earth observation can help. These challenges include the protection of environmental assets, promotion of sustainable natural resource development and risk reduction from natural disasters.

• November 10, 2015: ESA and the Canadian Space Agency have signed an agreement that facilitates access to the Sentinel satellite data primarily for users from Canada. This dedicated agreement will facilitate Sentinel data exploitation through the Canadian Collaborative Archiving and Dissemination Centers. 54)

- The Collaborative Data Hub will soon coordinate ground segment activities in the country – such as hosting, distributing, ensuring access and archiving Sentinel data – and act as an interface between ESA and national Canadian initiatives. This will be done through a ‘national mirror site', under the lead of the Center for Mapping and Earth Observation.

- Canada is the ninth Participating State to have signed the agreement, following Greece, Norway, Italy, Finland, Germany, France, UK and Sweden.

• March 19, 2015: ESA and the UK Space Agency have signed an arrangement that establishes access to data from the Sentinel satellites, marking a significant step in their exploitation. 55)

- The agreement aims to facilitate Sentinel data exploitation in the country. The UK Space Agency will coordinate ground segment activities in the UK – such as hosting, distributing, ensuring access and archiving Sentinel data – and act as an interface between ESA and national initiatives. This will be done through a ‘national mirror site' at the Harwell Science, Innovation and Business Campus in Oxfordshire, where ESA's space applications center, ECSAT, is also based.

• November 7, 2014: With the first Copernicus satellite Sentinel-1A now operational, ESA and the DLR German Aerospace Center have signed an arrangement on managing and accessing Sentinel data. Germany is the fourth Participating State to sign the agreement after Greece, Norway and Italy. 56)

• Dec. 12, 2014: In March 2014, ESA presented its plans to the Swedish National Space Board (SNSB) regarding the future Swedish user access to Sentinel data. Subsequent discussions led to SNSB entrusting Metria and Spacemetric with the task to investigate and report upon Swedish needs for Sentinel data, and the technical solutions necessitated by these needs. Broadly speaking, Metria was given the brief to investigate the needs, whilst Spacemetric was asked to shed light on the more technical aspects. 57)

Table 4: Copernicus Space Component Collaborative Arrangements 50) 51) 52) 53) 54) 55) 56) 57)

• On 28 August, 2017, EUMETSAT's near-real-time dissemination service went to the next level when EUMETSAT's CODA (Copernicus Online Data Access) service, became operationally available to users via the new single-sign on option. 58)

- It ensures that CODA users can access both Copernicus and data from EUMETSAT's Earth observation portal with one username and password.

- In combination with EUMETCast - a flexible multicasting service delivering the unified data streams from Copernicus and EUMETSAT's own missions, as well as EUMETview - an interactive visualization service especially for satellite imagery, EUMETSAT's data services provide solutions for a variety of different needs:

a) Sourcing Copernicus Data with CODA: EUMETSAT's CODA service is a rolling archive featuring a month's worth of Sentinel-3 data through an uncomplicated web interface as well as a scripting service, which allows users to automate bulk data downloads (within certain parameters).

After an extensive pilot phase, the CODA service is now fully available to users. CODA is particularly relevant for the ocean and remote sensing scientists, but its benefits reach beyond the scientific community. Developers in the public and private sector, be it for products or information services, can use CODA to develop innovative applications.

Hayley Evers King (Plymouth Marine Laboratory) summarizes her experience: "CODA is ideal for our daily business. It allows us to investigate specific areas and locate data for a particular region anywhere on the globe. This is, for example, useful when spotting algae blooms. The handling is particularly easy and follows a streamlined, user-friendly process. CODA allows us to select data without needing much experience. This is immensely helpful."

b) Data dissemination via EUMETCast: The vast majority of marine data from the Copernicus-3A satellite, operated by EUMETSAT on behalf of the European Union, are now available on EUMETCast. With this milestone, EUMETSAT's flexible multicasting service now delivers unified data streams to Copernicus users integrating observations from Copernicus and its own missions. This new marine data stream, involving products from Sentinel-3A, Jason-3, Metop and Meteosat creates a broad range of opportunities for the downstream development of applications, services and – ultimately – added value in Europe.

For Hayley Evers King (Plymouth Marine Laboratory) EUMETCast is important because "... it allows us to routinely and quickly access large amounts of data. We use it together with CODA and EUMETview; having these various sources of data access will increase the number of users for Copernicus data."

• July 13, 2017: Action against Hunger, an international NGO (Non-Governmental Organization) working in the West African Sahel, has been using EO data to enhance the planning of humanitarian responses to drought impacts. Software developed by Action against Hunger uses Copernicus Global Land Service Products to estimate biomass/grassland production and water availability in the Sahel region. The NGO uses the software and Copernicus products to strengthen the drought monitoring capacity in the region. This is helping decision makers -such as the Government of Mali - to operate their own drought detection system, as a component of the national early warning system. To further democratize the information, the next step is to deliver information directly to herders. 59)

- Over the years, rainfall in the West African Sahel has become increasingly volatile, with years of floods preceding extreme droughts. These climatic shocks place millions of people in a precarious and vulnerable situation, which is more acutely felt by livestock herders.

- In countries such as Mali and Niger, the majority of cattle are held in semi-nomadic herds that move according to the seasons in search of greener pasture and water. As the Sahel has a single rainy season of 3-4 months between July and October, herders need to make careful decisions on moving their cattle, ensuring that their animals stay healthy and survive the long dry season. For the communities in the region a poor rainy season can severely affect their way of living. Family herds that took decades to form can be decimated in only a few months. As an example, in 2009, following a drought in Niger, herders in the worst-hit areas lost up to 90% of their livestock.

- Reliable information on biomass and water availability is fundamental. Herders, as well as humanitarian and government actors, need to know which areas are going to be impacted by droughts to plan for early response interventions.

- Since 2005, a humanitarian NGO, Action against Hunger (Action Contre la Faim, ACF), has been working to use remote sensing data to improve humanitarian response to droughts. Through a partnership with the Flemish Institute of Technology (VITO NV, Belgium), ACF has been providing geo-information, derived from the SPOT/VGT and PROBA-V satellite sensors, to other humanitarian actors in order to identify areas prone to drought.

- Over the years, this initiative has grown and several Copernicus Global Land Service products related to vegetation and water - Dry Matter Productivity, Water Bodies, Soil Water Index and Normalized Difference Vegetation Index - are now being used operationally to monitor the West Sahel. Software developed by ACF uses Copernicus data to estimate biomass/grassland production and water availability. ACF also initiated capacity-building activities to ensure awareness of the benefits and use of EO data and increase engagement of local governments in Niger and Mali. As a result, the government of Mali now operates its own drought detection system as part of a national Early Warning System (see map below). The system relies on Copernicus Global Land Service products as inputs. Through this system authorities are supported in planning humanitarian responses to water shortages and possible livestock production deficits.

- In addition, by using these products in various maps, ACF has been able to consistently draw the attention of the humanitarian community to the needs of vulnerable populations, and stress the need for livelihood planning in regions at risk.

 


1) "Global Monitoring for Environment and Security," EC/ESA team, Final Report for the GMES Initial Period (2001-2003), Feb. 10, 2004

2) "Copernicus: new name for European Earth Observation Programme," European Commission Press Release, Dec. 12, 2012, URL: http://europa.eu/rapid/press-release_IP-12-1345_en.htm

3) V. Liebig, J. Aschbacher, S. Briggs, G. Kohlhammer, R. Zobl, "GMES - Global Monitoring for Environment and Security: The Second European Flagship in Space," ESA Bulletin, No. 130, May 2007, pp. 10-16

4) V. Liebig, J. Aschbacher, "Global Monitoring for Environment and Security," ESA Bulletin, No 123, Aug. 2005, pp. 20-26

5) "A European Approach to Global Monitoring for Environment and Security (GMES): Towards Meeting User Needs," ESA/PB-EO (2001) 56, Rev. 1, Annex, June 13, 2001, Version 2.01

6) P. Busquin, J.-J. Dordain, "GMES Newsletter No 1," http://esamultimedia.esa.int/docs/GMES_Newsletter_1.pdf

7) http://www.esa.int/esaLP/SEMRRI0DU8E_LPgmes_0.html

8) http://www.gmes.info/

9) M. Drinkwater, H. Rebhan, P.-Y. Le Traon, L. Phalippou, D. Cotton, J. Johannessen, G. Ruffini, P. Bahurel, M. Bell, B. Chapron, N. Pinardi, I. Robinson, L. Santoleri, D. Stammer, "The Roadmap for a GMES Operational Oceanography Mission," ESA Bulletin No 124, Nov. 2005, pp. 42-48, URL: http://www.esa.int/esapub/bulletin/bulletin124/bul124g_drinkwater.pdf

10) "GMES Space Component Program Proposal," ESA/PB-EO(2005)54, Rev. 3, Paris, January 4, 2006

11) http://www.esa.int/esaLP/SEMZHM0DU8E_LPgmes_1.html

12) http://www.esa.int/esaLP/LPgmes.html

13) Josef Aschbacher, "GMES Space Component," European conference 'Towards eEnvironment,' Prague, Czech Republic March 25,-27, 2009, URL: http://www.e-envi2009.org/presentations/S4/Aschbacher.pdf

14) Josef Aschbacher, Thomas Beer, Antonio Ciccolella, M. Pilar Milagro, Eleni Paliouras, "Observing Earth, for a Safer Planet, GMES Space Component: status and challenges," ESA Bulletin, No 142, May 2010, pp. 22-31

15) E. Forcada, G. Kohlhammer, C. Casgrain, Y. Lavergne, A. Tuozzi, G. Schreier, M. Winterholer, "European Earth Observation Ground Segment Coordination," Proceedings of the 57th IAC/IAF/IAA (International Astronautical Congress), Valencia, Spain, Oct. 2-6, 2006, IAC-06-B.1.1.03

16) European Commission Decision creating a Bureau for Global Monitoring for Environment and Security (GMES), C(2006)673, Brussels, March 8, 2006.

17) J. A. Johannessen, P.-Y. Le Traon, I. Robinson, K. Nittis, M. J. Bell, N. Pinardi, P. Bahurel, "Marine Environment and Security for the European Area - Toward Operational Oceanography," Bulletin of the American Meteorological Society (BAMS), Vol. 87, No 8, August 2006, pp.1081-1090. (doi: 10.1175/BAMS-87-8-1081)

18) J. Aschbacher, " GMES Raumfahrtkomponente - Status & Planung," Raumfahrt im 7. EU RP-Schwerpunkt GMES, 11. Oktober 2006, Jena, Germany

19) Gunter Schreier, Olaf Kranz, "What‘s in GMES for treaty monitoring and law enforcement," ISPRS/ESPI/IAA/IISL Conference "Current legal issues for satellite Earth observation", Vienna, Austria, April 8-9, 2010, URL: http://www.espi.or.at/images/stories/dokumente/conference2010/schreier.pdf

20) http://www.esa.int/esaMI/Operations/SEM98Z8L6VE_0.html

21) J. Aschbacher, M. P. Milagro-Pérez, A. Ciccolella, E. Paliouras, G. Filippazzo, T. Beer, "GMES Space Component: Programme overview," Proceedings of IAC 2011 (62nd International Astronautical Congress), Cape Town, South Africa, Oct. 3-7, 2011, paper: IAC-11-B1.1.9

22) Josef Aschbacher, "GMES Programmatic scenario," 3rd GSCB (Ground Segment Coordination Body) Workshop, 2012, ESA/ESRIN, Frascati, Italy, June 6-7, 2012, URL: http://earth.esa.int/gscb/papers/2012/3-GMES_Programmatic_Scenario.pdf

23) H. L. Moeller, S. Lokas, O. Sy, B. Seitz, P. Bargellini, "The GMES-Sentinels – System and Operations," Proceedings of the SpaceOps 2010 Conference, Huntsville, ALA, USA, April 25-30, 2010, paper: AIAA 2010-2189

24) Simon Jutz, "Copernicus - an European Achievement," 52nd session of the Scientific and Technical Subcommittee, UNOOSA (United Nations Office for Outer Affairs), Vienna, Austria, Feb. 2-13, 2015, URL: http://www.unoosa.org/pdf/pres/stsc2015/tech-53E.pdf

25) E. Attema, "Mission and System Characteristics of the European Radar Observatory (Sentinel-1)," FRINGE 2005 Workshop, ESA/ESRIN, Frascati, Italy, Nov. 28-Dec. 2, 2005

26) E. Attema, "Mission Requirements Document for the European Radar Observatory Sentinel-1," ES-RS-ESA-SY-0007, issue 1, revision 4, July 11, 2005, URL: http://multimeter's/docs/GMES/GMES_SENT1_MORD_1-4_approved_version. pdf

27) P. Barrelling, P. P. Emanuel, I. Shemer, F. Marchese, C. Steiger, H. L. Moeller, "The GMES-Sentinels Flight Operations Concept," Proceedings of the SpaceOps 2010 Conference, Huntsville, ALA, USA, April 25-30, 2010, paper: AIAA 2010-1924

28) Josiane Masson, "GMES and GEO hand in hand," GEO European project workshop, 3-4 Sept. 2008, URL: http://ec.europa.eu/research/environment/geo/pdf/geo_workshop_3_4_sept-2008_ju_jm-gmes_en.pdf

29) "Latest Copernicus service to become operational," Copernicus Observer, Issue March 02, 2013, URL: http://newsletter.gmes.info/article/latest-copernicus-service-become-operational

30) "The maps produced by the Copernicus Emergency Management Service are now publicly available," Copernicus Observer, Issue March 02, 2013, URL: http://newsletter.gmes.info/article/maps-produced-copernicus-emergency-management-service-are-now-publicly-available

31) M. Eugenia Forcada, H. Laur, B. Hoersch, J. Martin, P. Goryl, G. Ottavianelli, G. Buscemi, S. Badessi, "ESA Missions and Sentinels ground segment interoperability," GSCB (Ground Segment Coordination Body) Workshop, ESA/ESRIN, Frascati, Italy, June 18-19, 2009, URL: http://www.congrex.nl/08c33/papers/3.1_Forcada.pdf

32) Stephan Kiemle, "Heterogeneous Missions Accessibility Architecture Working Group," 3rd GSCB (Ground Segment Coordination Body) Workshop, 2012, ESA/ESRIN, Frascati, Italy, June 6-7, 2012, URL: http://earth.esa.int/gscb/papers/2012/9-HMA_Architecture.pdf

33) Pascal Lecomte, Greg Stensaas, "Overview of progress towards a data quality assurance strategy to facilitate interoperability," GSCB (Ground Segment Coordination Body) Workshop, ESA/ESRIN, Frascati, Italy, June 18-19, 2009, URL: http://www.congrex.nl/08c33/papers/2.2_Lecomte.pdf

34) Bojan R. Bojkov, "The Cal/Val Interest Working Group - initial activities, infrastructure, and QA4EO," 3rd GSCB (Ground Segment Coordination Body) Workshop, 2012, ESA/ESRIN, Frascati, Italy, June 6-7, 2012, URL: http://earth.esa.int/gscb/papers/2012/10-GSCB_cal_val_interest_group.pdf

35) V. Beruti, M. Albani, "European framework for the long term preservation of Earth Observation space data," GSCB (Ground Segment Coordination Body) Workshop, ESA/ESRIN, Frascati, Italy, June 18-19, 2009, URL: http://www.congrex.nl/08c33/papers/2.1_Albani.pdf

36) Pier Bargellini, "GMES Space Component Operations Concept," 3rd GSCB (Ground Segment Coordination Body) Workshop, 2012, ESA/ESRIN, Frascati, Italy, June 6-7, 2012, URL: http://earth.esa.int/gscb/papers/2012/4-GSC_Operations_Concept.pdf

37) "ESA Member States approve full and open Sentinel data policy principles," ESA, Nov. 27, 2009, URL: http://www.esa.int/esaEO/SEMXK570A2G_environment_0.html

38) Bianca Hoersch, "GMES Space Component & Sentinel(-2)," Landsat Science Team Meeting, Mountain View, CA, USA, Jan. 19-21, 2010, URL: http://landsat.usgs.gov/documents/Jan_2010_Landsat_Science_Team-meeting_Jan2010_Hoersch_Final-short.pdf

39) "EU: Sentinel data policy principles have been approved," Dec. 18, 2009, URL: http://www.epractice.eu/en/news/300771

40) "Regulation on the GMES programme and its initial operations 2011–2013," SWIFT E-News, No 11, June 16, 2010, URL: http://www.gmes.info/fileadmin/files/8.%20Newsletter/Newsletters-2010/SWIFT_E-News11.pdf

41) Josef Aschbacher, Maria Pilar Milagro-Pérez, "GMES Space Component: Programmatic Status," Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), Munich, Germany, July 22-27, 2012

42) Bianca Hoersch, "GMES Contributing Missions (GCM) Data Access," 3rd GSCB (Ground Segment Coordination Body) Workshop, 2012, ESA/ESRIN, Frascati, Italy, June 6-7, 2012, URL: http://earth.esa.int/gscb/papers/2012/7-GMES_contirbuting_Missions.pdf

43) Jolyon Martin, "GSC Missions Data Access and User Services - The Sentinel era," 3rd GSCB (Ground Segment Coordination Body) Workshop, 2012, ESA/ESRIN, Frascati, Italy, June 6-7, 2012, URL: http://earth.esa.int/gscb/papers/2012/6-Sentinel_Data_Access.pdf

44) Pierre Potin, "Sentinel High Level Oper a t i o n s Plan (HLOP) – Preliminary Acquisition Concept," 3rd GSCB (Ground Segment Coordination Body) Workshop, 2012, ESA/ESRIN, Frascati, Italy, June 6-7, 2012, URL: http://earth.esa.int/gscb/papers/2012/5-Sentinel_HLOP_Preliminary_Acquisition_Concept.pdf

45) Antonio Ciccolella, Josef Aschbacher, "Reflections on Earth Observation for Civil Security in Europe," Proceedings of the 63rd IAC (International Astronautical Congress), Naples, Italy, Oct. 1-5, 2012, paper: IAC-12.B1.6.4

46) Julia Yagüe, Javier Noguero Galilea, Donata Pedrazzani, Jorge Pacios Martínez, "A dual coordinated data access to GMES-Security system of systems," Proceedings of the 63rd IAC (International Astronautical Congress), Naples, Italy, Oct. 1-5, 2012, paper: IAC-12-B1.6.5

47) "An editorial by Reinhard Schulte-Braucks: Copernicus – Dawn of a new era," Copernicus Observer, Issue No 10, April 2015, URL: http://newsletter.gmes.info/issue-10-april-2015-article/editorial-reinhard-schulte-braucks-copernicus-%E2-80%93-dawn-new-era

48) "Sentinel Family," ESA, April 29, 2014, URL: http://www.esa.int/spaceinimages/Images/2014/04/Sentinel_family

49) "What can public administrations do with Copernicus data?," Copernicus Observer, 20 Oct. 2017, URL: http://copernicus.eu/news/what-can-public-administrations-do-copernicus-data

50) "Ireland signs up to Copernicus Sentinel agreement," ESA, Oct. 17, 2017, URL: http://m.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Ireland_signs-up_to_Copernicus_Sentinel_agreement

51) "The evolution of the Sentinel Collaborative Ground Segment," ESA, 12 January 2017, URL: https://sentinels.copernicus.eu/web/sentinel/news/-/article/the-evolution-of-the-sentinel-collaborative-ground-segment

52) "GÉANT and the European Space Agency join forces to distribute Copernicus data," EC, 26 Feb. 2016, URL: https://ec.europa.eu/digital-single-market/en/news-geant-and-european-space-agency-join-forces-distribute-copernicus-data

53) "Australia ensured access to Sentinel data," NCI, 7 April 2016, URL: http://nci.org.au/2016/04/07/australia-ensured-access-to-sentinel-data/

54) "Canada joins Sentinel collaborative ground segment," ESA, Nov. 10, 2015, URL: http://m.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Canada_joins-Sentinel_collaborative_ground_segment

55) "UK joins Sentinel Collaborative Ground Segment," ESA 19 March 2015, URL: http://m.esa.int/Our_Activities/Observing_the_Earth/Copernicus/UK_joins-Sentinel_Collaborative_Ground_Segment

56) "ESA and the DLR German Aerospace Center have signed the collaborative ground segment cooperation for Sentinel data," 7 Nov. 2014, URL: http://www.earth2observe.eu/?p=4695

57) "Sentinel Collaborative Ground Segment Sweden Final Report," SM-CGSS-FREP-10, 12 Dec. 2014, URL: http://www.snsb.se/Global/Publikationer/Utredning%20svenskt-20marksegment%20f%C3-B6r%20sentineldata_tekniska%20krav.pdf

58) "Accessing Copernicus data in near real time via CODA and EUMETCast," EUMETSAT, 30 August, 2017, URL: https://www.eumetsat.int/website/home/News/DAT_3622761.html?lang-EN&pState=1

59) "Estimating biomass and water availability for livestock in Niger and Mali," Copernicus benefitting Africa's Sahel region, 13 July 2017, URL: http://copernicus.eu/news/estimating-biomass-and-water-availability-livestock-niger-and-mali
 


The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: "Observation of the Earth and Its Environment: Survey of Missions and Sensors" (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (herb.kramer@gmx.net)

Space Component    Sentinels    Services     New Era    References    Back to Top

 

Minimize Related Missions